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ABSTRACT

By using a Monte-Carlo (MC) method, the average solid angles subtended by a circular disk detector of
radius R coaxial to a circular disk source of radius S are calculated. The generated data are for S/h ranging
from 0.1 to 10 and R/h from 0.1 to 6, where h is the distance between the source and detector. The
generated average solid angles have values ranging from 0.0006 to 5.2499. The data were fitted to a
simple analytical expression. The results were compared with published data.
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INTRODUCTION

In some nuclear and radiation experiments, the
accurate knowledge of the solid angle subtended by the
detector with regard to the source is required. The most
common simple case is the solid angle subtended at a
point isotropic source by a coaxial detector of a circular
aperture of radius R located at a certain distance h
away from the source. In this case, the solid angle
is given by

Qo=21t[ 1- 1)

1
¢1+(R/h)2}

For any shape of source and detector, the solid angle
is given by an integration in the form

1 cosa
Q= dA ——dA 2
41tA.[ s;{; x? i @

where A is the area of a plane isotropic source, r
represents the distance between the two differential
arcas dA; and dA; of the source and detector
respectively and « is the angle between the normal to
the surface element dA; and the distance r.

The integration given by Eq. (2) can be solved
analytically in very few cases. For example, in the case
of a disk source parallel to a coaxial circular detector,
Masket (1957) and Ruffle (1967) obtained an
expression for {2 involving elliptic integrals. After some
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approximations to make the original geometry
integrable, Gardner and Verghese (1971), Selim and
Abbas (1994) have found an analytical expression to
calculate the solid angle subtended by a circular disk
from a non-axial point source. In addition to their
models, tables are given for the average solid angles
subtended by a circular detector disk from a coaxial
circular isotropic source disk for R/h and S/h ranging
from 0.1 to 3.0. Later, Gardner et al (1980) have fitted
the tabulated results to a polynomial expression. The
MC technique is a general method which can be used
to calculate the solid angles with complicated
geometries. Such method was used by different authors,
Williams (1966), Carchon et al (1975) and Wielopolski
(1977).

In the present work, a MC program was developed to
estimate the average solid angle subtended by circular
detector disks from coaxial parallel circular source
disks. The obtained data for R/h ranging from 0.1 to 6
and S/h from 0.1 to 10 were fitted to a very simple
empirical expression.

MONTE-CARLO CALCULATIONS

By the MC method, the particle position of birth and
the direction of emission are determined by using
random numbers. It can be then checked whether or not
the particle direction intercepts the detector. The solid
angle can be calculated from the ratio of the number of
particles hitting the detector to the number of those
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emitted by the source.

Consider now an isotropic point source at O' of a
distance p from the axis OZ of the detector, which
located by a distance h above the source, as in Figure

(1).
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Figure 1. Source-to-detector geometry.

It is clear that the angles o and ¢ are spherical
coordinates in a system with Z'-axis as a polar axis.
The direction « of the emitted particle varies randomly
and can be determined according to

cos a = 1- (RN),

where (RN), is a random number uniformly distributed
in the interval (0,1). It is also obvious that ¢ is
uniformly distributed in the interval (0,27) and given
by

¢=2m.(Rn),
where (RN), is another random number.

The coordinates of the point P (Figure (1)) with respect
to the frame O" are given by

r.sin o cos ¢,
r.sin « sin ¢, (3a)

<
[}

r.Cos o

N
n

As we show from Figure (1), the point P intersects the

D 144

detector plane at z'=h. Accordingly, the equations (3a)
can be written in the form

x'|h = tana cos ¢, } (3b)

y/h = tane sin ¢
For simplicity, we consider now that the source O°
locates at an arbitrary distance p from the axis OZ

along the Y-axis. In this case the x- and y-coordinates
of the point P are

x/h
y/h

tano cos ¢, } 30)

tana sin ¢ + p/h

with respect to the frame O.

Let us now take the case of a homogeneous surface
disc source of radius S, whose center is located at O
and parallel to the disc detector. The coordinates of a
random point on the source is given by

x,=r'.sin ¥ and y,=r'.cos ¥

with respect to the frame O°, where

and r' = S.‘/(RN)4

Again, (Rn); and (RN), are two random numbers
uniformly distributed in the intervals (0,1). Therefore,
the coordinates of the point P for a disc source, whose
center is located at a point on Y-axis of distance p from
OZ-axis, are given by

¥ = 2n.(RN),

x/h
ylh

tan « cos ¢ +x, /h, }
g (3d)
tan a sing +y, /h + p/h

with respect to the frame O.
When the center of the source is located on the axis of
the detector, we put p/h =0.
We can now decide whether the emitted particle hits

the detector by comparing the valuey/(x/h)? + (y/h)®
with R/h, where R is the detector radius. The solid

angle { is given by

Qw25
No
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Table 1. Values of the fit parameters a and b, and the RM.S. relative deviation of calculated solid angles
(by Eq. 4) from the Monte Carlo data for Rh < 1.6.

correlation R.M.S. relative (%)
coefficient

i o' b r a and b given a and b from

in this table Eqs 5 and 6
0.1 -0.370 1.880 0.99997 2.90 3.1
0.3 -0.470 1.907 0.99998 1.00 25
0.5 -0.641 1.928 0.99999 0.95 14
0.7 -0.848 1.977 =~ 1 0.40 25
1.0 -1.260 2.072 0.99998 0.94 4.0
12 -1.690 2.167 0.99996 1.20 34
1.6 -2.200 2.340 0.99992 3.20 35

Table 2. Values of the fit parameters a and b for Rh = 1.9.
First region Second region

R/h Ina b r Ina b r
1.9 -3.021 2,771 0.99995 -2.122 2:123 0.9998
22 -3.520 2.889 0.99994 -2.405 2.145 0.9996
25 -3.960 2977 0.99998 -2.742 2.205 0.9995
3.0 -4.671 3.176 0.99990 -3.340 2.328 0.9997
3.5 -5.301 3.250 0.99995 -3.795 2.398 0.9999 .-
4.0 -5.800 3.241 0.99983 -4.582 2.637 0.9991
45 -6.240 3.202 0.99987 -5.487 2.937 0.9993
5.0 -6.602 3.150 0.99987 -6.460 3.253 0.9992
6.0 -7.263 3.121 0.99981 -8.717 4.031 0.9997

Table 3. RM.S. deviation of the calculated values (using Eq. 4) from the Monte Carlo results.

Rh 19 22, 235 30 .35 40. 45 .50. 60
a and b from Table 2 0.6 05 7 04l 07 4 Lénes Lo d Ontal &
RMS(%) [3andb from Eqs. 8and 9 |40 09 20 12 14 21 18 19 19
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Table 4. RM.S.-error (%) of the calculated solid angles (by Eq. 4) from the tabulated values by Gardner
and Verghese.

R.M.S. rel. deviation (%)
R/h a and b from Tables 1 a and b according to the
and 2 given expressions
0.1 1.0 1.8
0.2 1.6 27
03 1.3 3.0
0.4 22 28
0.5 23 2.3
0.6 20 1.4
0.7 | B j 1.0
0.8 3.3 0.7
0.9 53 28
1.0 22 1.2
1.2 23 1.4
14 5 26
1.6 1.6 3.7
1.8 0.9 1.7
20 20 1.4
ZA 1.7 1.0
24 0.9 0.8
2.6 0.5 0.5
28 0.7 0.5
3.0 0.9 0.6
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where N is the number of particles hitting the detector
and N is the number of the emitted particles from the
source in the upper hemisphere.
In order to have a reasonable level of statistical errors
and to save the computation time, different numbers of
histories (N,)) for each case was taken. It is known that
the solid angle increases as S/h decreases at constant
R/h, whereas at constant S/h, it increases as R/h
increases. For small values of 2, large number of
histories was taken and vice versa. The minimum
number of histories was 10* (for R/h =6 and S/h =0.1),
and the maximum one was 3x10° (for R/ = 0.1 and
S/h = 10). These numbers of trajectories given relative
statlstlcal errors of 0.1% and 2.8% respectively.

For 10° histories, the IBM (486-Dx66) compatible
computer time for each fixed geometry was 9 sec.

RESULTS AND DISCUSSION

Using the previous MC method, values of the average
solid angle subtended at an isotropic circular source by
a coaxial parallel disk detector were generated for a
range of S/h from 0.1 to 10 and R/h from 0.1 to 6. The
generated values are ranging from a minimum of
0.0006 to a maximum of 5.2499.

At constant R/h value, the varation of @ (R/h, S/h)
with S/h was expressed by the following simple
empirical equation

Q
Q R/, S/) = ——2— @
a(S/h)” +1

where the parameters a and b are only a function of
R/, and Q, is given by Eq. (1). It can be observed that
the solid angle Q(R/h, S/h) tends to zero as Sh
becomes infinity and it approaches 2 as S/ tends to
Zero.

The expression (4) was investigated using the average
solid angles generated by the MC program. In Figure

(2) are plots of ln[n (R/h, S -l]versus In(S/), for

three selected R/h-values. Within the statistical errors of
the MC calculations and for R/h < 1.6, the points lie
very close to a series of straight lines of different
intercepts and gradients. For R/h > 1.6, the results give
no one straight line for the whole range of S/h, but it
was observed that the results can be represented by two

Alexandria Engineering Journal, Vol. 34, No. 5, December 1995

different straight lines for each value of R/h.
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at three R/h-values.

1) Results for Rh < 1.6

At each R/h-value and by using the linear least-
squares method, the generated data were fit to Eq. (4).
The obtained values of a and b (and the corresponding
correlation coefficient r) are given in Table (1). The
dependence of a and b on R/h was investigated and it
was found that a and b can be represented by

In a=- (0.481 R/ + 0.607)>> )

with correlation coefficient r= 0.9994, and

l_nb_a = - (0.368 R/h + 0.398) (6)

with r = 0.999

In order to examine the accuracy of the formulas (4),
(5) and (6), the RMS relative deviation of the values
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calculated by Eq. (4) from the generated MC values
was calculated. For each R/h-value, Table (1) contains
two columns for the RMS deviation, one of them using
the parameters a and b given in Table (1), and the other
using the calculated a and b according to Eqgs. (5) and
(6). As shown, the values of a and b listed in Table (1)
give RMS deviation in the range of 0.4% to 3.2% and
total RMS deviation of about 1.8% (140 values). The
values of a and b calculated from Eqs. (5) and (6) give
RMS deviation ranging from 1.4% to 4% and total
RMS deviation of about 3%.

ii) Results for R/h > 1.6

As previously pointed out, it is difficult to find the
same values of the parameters a and b, which give a
good accuracy over the whole range of S/h (between
0.1 to 10)

After examination the present MC data, it was found

that the plot of ln[—n—°— —l]vs In(S/h) gives two
Q (R/h, S/h)

different straight lines for the whole range of S/h at

each R/h-value. It was also observed that the boundary

of the two straight lines is not a fixed value, but it

increases as R/h increases as follows.

(Sh), = 6.947 - 5.73/(R/) 0]

Accordingly, the whole range of S/h will be divided
into two regions

- the first region for (S/h) < (S/h),,
- the second region for (S/h) > (S/h),

The MC data have been fitted to the empirical formula
(4) and the constants a and b were obtained for each
R/h-value. Two different sets of the constants were
obtained. These sets and the correlation coefficient r for
each R/h are listed in Table (2).

Consequently, altemmative functions of R/h were
investigated and from a least square linear regression
analysis of a and b, the following expressions were
obtained
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Ina = 13.84 - 14.84 R/h)°2,
8
Ebi - 0.5214 - 1.1635 J/Rb ®)
for the first region, and
Ina = -[0.1815 (R/h)? + 1.4494]19%3
Ina ©)

2 = -[06955 In(R/h) +0.5465]°

for the second region.

Again, in order to evaluate the validity of the
previous expressions, the calculated solid angles were
compared with both the MC data and the tabulated
results given by Gardner and Verghese (1971).

According to Eq. (4) and using a and b given in
Table (2), the RMS dispersion of the MC points about
the calculated values is 0.98% (180 points), whereas the
dispersion increases to a value of 2% when the
parameters a and b were calculated from Eqn. (8) and
(9). Table (3) lists the RMS errors for each R/h-value.

The RMS spread of Gardner-Verghese data (for a
range of S/h and R/h from 0.1 to 3.0) about the
calculated values using the given expressions is 1.9%,
and the deviation has a value of 2% using a and b
given in Tables (1) and (2), the in-between values of a
and b were obtained by interpolation. Values of RMS
errors are listed in Table (4) for each R/h-value.

From the previous discussion, it is evident that the
results have a good agreement with other published
data. The comparison is satisfactory and it can be
allowed to conclude that the proposed empirical
expressions are valid to calculate Q(R/h, S/h) without
serious discrepancies, in the given ranges of R/ and
S/h. In addition, the MC results have relative small
statistical errors and short computer time. Finally, our
MC-program is also constructed to calculate the
average solid angles in the case of non-axial disk
source. Such calculations are presently being
investigated.
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