' RAM TESTING TECHNIQUES

Aly M. Hassan

Department of Computer Engineering and Science, Faculty of Electronic Engineering,
Menoufia University, Menouf, Egypt.

ABSTRACT

This paper presents a review and comparison for the work done in RAM testing methods. Types of
faults and fault models are first presented, then the different methods of testing are explained. These
methods were used to test a one megabit RAM (128 KByte) of an IBM-PC computer memory space.
Results have shown that many methods are inadequate and takes a very long computer time. Due
to the very high capacity of RAMs available today, this comparison is important for selecting the
suitable test method for certain RAM according to its size.

Keywords: Digital testing, Functional testing, RAM testing, Diagnostic test algorithms.

1. INTRODUCTION

The memory . is a subsystem of particular
importance in most digital systems. However, apart
from input/output, it is one of the less-reliable
components within the basic digital system structure
(control, memory, AL U, buses, general registers, etc.)
[1]. In the early days of memory design, test
procedures were developed in an ad hoc manner.
Although memory size was limited to the order of a
few tenth of kilobytes, the fault coverage of these ad
hoc test procedures were also limited and often
indeterminable.

A significant amount of work has been done in
recent years to obtain fast and very large memory
systems. As a result, the density of semiconductor
memory chips has increased dramatically. With the
increasing complexity, the efficient testing of such
memories has been recognized as a difficult problem.
Because the complexity of memories is quadrupling
every two or three years, even a linear increase in
testing time becomes inefficient for testing large
memories. A multimegabit random access memory
requires excessive time just to test only all cells
stuck-at faults. To overcome this problem,
researchers have sought to develop innovative test
generation algorithms [6]-[13] and on-chip built-in
test methods [14]-[18].

Unfortunately, RAMs are susceptible to many
different forms of failure., The main problem in a

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

test generation algorithm is how to provide a set of
test vectors that are not excessively long and yet
cover all the possible failures. Possible failure modes
for RAMs include: '

(i) incorrect addressing (decoder malfunction).

(i) multiple writing (usually caused by capacitive
coupling)

(ili) pattern sensitivity.

(iv) stuck-at 1/0 faults

In this context, the article starts by discussing how
RAM chips are organized, various RAM fault models
are reviewed and the related physical faults are
highlighted. Different test algorithms and their fault
coverage are presented. The address range from
016550 h to 03654F h (1 Mbits) in an IBM-PC
memory space was used as an experimental test area
for comparing the efficiency of each algorithm and
the results are compared. Finally the built-in
self-testing technique is presented and its different
approaches are discussed.

2. RAM FAULT MODELS
Before discussing the important failure models, let

us consider how RAM chips are organized in a
digital system. A RAM chip consists of an array of

B 127

HASSAN: RAM Testing Techniques

memory cells, an address decoder, address and data
registers, and read/write logic. This basic architecture
is generally known as the four quadrant architecture,
Figure (1). Generally, an M-word * k-bit RAM is
organized as k identical partitions. Each M-bit
partition may itself be organized as p two
dimensional arrays of m * n cells, such that M=p *
m * n, where (p>1).

Cell Array Cell Array

Row

Sense Ampl. & Column Decoder

De
Cell Array | o | Cell Array
der
Alligw Timilng Cglnmn Data
ddress an Address '
Buffer conirol Aﬁ{gﬁ? B“_ﬂ"
1

—

Figure 1. Four quadrant organization of a typical
RAM.

A wide variety of physical failures can occur in
memory array, address decoder , and read/write logic,
causing various failures in the memory function.
Their causes depend on some factors such as
component density, circuit layout, and manufacturing
method. A number of fault models have been
developed to capture the effects of physical failures
in RAMs. This section describes the important fault
models relevant for the functional testing of RAMs.
Faults not covered include soft faults such as
transient faults and intermittent faults.

Generally, an assumption have been used in the
development of all fault models and test algorithms,
the Single fault assumption.

This assumption is justified by the frequent testing
strategy , which states that we should test a system

B 128

often enough so that the probability of more than
one fault developing between two consecutive
testing experiments is sufficiently small [2]. There
are situations, however, in which frequent testing is
not sufficient to avoid the occurrence of multiple
faults. For example , in high- density circuits, like
RAMs, many physical faults can affect an area
containing several components and appears as a
multiple fault.

A multiple fault means simultaneous presence of
many faults in a circuit. To highlight the difficulty of
the multiple fault testing problem, consider a circuit
with n lines, while the number of single stuck-at
faults is only 2n, the total number of all possible
multiple and single stuck-at faults in the same circuit
is 3n -1. It means, for a simple circuit with only 10
lines, that the number of single stuck-at faults is
about 20, while the number of multiple and single
faults is about 59000. In addition to very long test
time needed, the detection of multiple faults is again
complicated due to the masking effect. Fortunately,
it was found that, in most cases, tests that detect all
single faults often detect most multiple faults. This
justifies the single fault assumption.

2.1 The Stuck-at fault model:

The simplest fault model is to consider that any
line or memory cell may have fault which causes its
contents to remain permanently either at logic 1 or
at logic 0 (stuck-at 1 or stuck-at 0). Stuck-at faults
are also useful for modeling faults in other parts of
the memory system, such as the decoder [4].

To test a stuck-at fault on a line or memory cell, it
should be sensitized by the logic value opposite to
the stuck-at value. If no input combination exists
which sensitizes the fault, or the fault effect can not
propagate to an output, the fault is called redundant
fault. The usefulness of stuck-at fault model results
from the following characteristics:

1- It represents many different physical faults.

2- It is independent of technology.

3- Tests that detect this fault detect many other
faults as well.

2.2 Coupling fault model [2]:

A pair of memory cells is said to be coupled if a
transition in one of them changes the contents of the

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

HASSAN: RAM Testing Techniques

other cell from one state to another . Consider the
situation shown in Figure (2), cell i stores a loglc 1
(right-most transistor Qi acting as a short circuit) and
cell i+1 stores a logic 0 (left-most transistor Qi+1
acting as an open-circuit). If the state of cell i is
changed, i.e. Qi drain goes to Vdd , then it may be
possible for the change of Qi drain to couple through
to Qi+1 via stray capacitance, and hence cause cell
i+1 to change state erroneously.

Vdd Stray N
Capacitance |

)l
.......... e
==l A

QM

s L
L L

RAM cell | RAM celli- 1

—

Figure 2. Coupling fault in RAM cells.

Coupling faults can occur in two ways, either the
transition in one cell forces the contents of other cell
to a certain value (1 or 0), or the transition causes
an inversion in the contents of the second cell.
Coupling faults could also exist between more than
two cells. In [3], two test strategies for detecting
RAM coupling faults were presented. In both
strategies, the input test data is randomly selected
and the output response is compressed in a signature
analyzer. One test strategy uses random selection of
both the address lines and the read/write control,
while the other sequentially cycles through the
address space with deterministic setting of the
read/write control. The relative merit of the two
strategies was measured by the average number of
accesses per address needed to meet a standard test
quality level. Results have shown that the
deterministic strategy offers a better performance
and is quite easy to implement.

Alexandria Engineering Journal, Vol. 34; No. 4, October 1995

2.3 Pattern-sensitive fault model:

A useful way to model faults in high density LSI,
VLSI circuits, specially RAMs, is to consider the
interactions logical signals that are adjacent in space
or time [9-11]. Such a fault occurs when a signal X
causes an adjacent signal Y to assume an incorrect
value. Faults of this type are called pattern-sensitive
faults [PSFs]. The high component and connection
densities of RAMs aggravate this fault. Another
instance of pattern sensitivity is the failure of a
device to recognize a single 0 (or 1) that follows a
long sequence of 1’s (or 0s) on a particular line.

A memory cell i is said to have a pattern sensitive
fault if its state is altered by a pattern of 0’s and 1’s,
0 -> 1 transition, 1 -> O transition, or both 0 -> 1 and
1 -> 0 transition in a group of other memory cells
j»K,-... The effect of pattern sensitivity appears as a
cell stuck- at fault or cell state transition fault for
small duration or as long as locations jK,.... contain
the previous specific data or data transitions. The
reason of such an influence was reported as a specxal
case of state coupling. (!

To simplify testing, a simpler fault model known
as neighborhood cell pattern sensitive fault model, is
often used. In this model, only the data in the
neighborhood cells (physical neighborhood) may
affect the state of a cell. Common neighborhood
models are the five-cell and nine-cell physical
neighborhood shown in Figure (3).

Base Cells.

/

B neighborhood cells

Figure 3. Five & Nine cell neighborhood.

B 129

HASSAN: RAM Testing Techniques

3. RAM TESTING TECHNIQUES

All test algorithms consist of a sequence of writes
and reads applied to the cells in the memory array.
Over the years, several algorithms of different
complexities have been developed to test RAMs.
These algorithms can be categorized into two
classes. In the first class, pattern- sensitive faults are
the target, so the whole memory is read after
changing the value of one or more cells. In the
second class, stuck-at faults are the target, so only
the cell of changed value is read.

It is important to note that most faults occurring in
the address decoder and the read/write logic can be
mapped to faults in the memory cell array, so
decoder faults will be detected by tests for the
memory cell array.

3.1 Simple read/write test:

This i1s a simple test procedure with very small
fault coverage developed in an ad hoc manner [2].
The strategy is as follows:

step 1: write a 1 to each location in the RAM.

step 2: read each location and check that it is 1.

step 3: write a 0 to each location .

step 4: read each location and check that it is 0.

All this test will prove is that at least one of the
cells in the memory works. This is because a fault in
the address decoder may cause the same cell to be
referenced each time. For example, if all address
lines (either external address lines or lines that come
out of the decoder) were bridged to 0 volts, then the
RAM will sull pass the test.

3.2 The Galloping pattern algorithm:

There are many variations for the galloping pattern
algorithm, known generally as GALPAT [5].
Normally galloping-one followed by galloping-zero
(or vice versa) sequences are used to achieve a
complete test. The prime objective of the GALPAT
sequence is to identify read-write disturbance
problems between a given cell and all other cells.
Effectively, therefore, the application of both forms
of GALPAT (1s and 0s) should detect any pattern
sensitivity problems.

The algorithm first initializes all memory locations

B 130

to 0. Then for each cell it writes 1, reads all cells,
then writes 0 back to the cell, this is the galloping 1.
The procedure is repeated with galloping 0. To
make the process clear we consider a simple memory
array of only 9 cells. The galloping 1 part of the
algorithm is shown in Figure (4). Each cell is read at
least once, when it has a value of 1 as well as when
it has a value of 0. Thus , all cell stuck-at-1/0 faults
are detected. The switching of state also detects all
state transition faults. As only one cell contains 1 at
any time , address decoder faults are also detected.
Any two arbitrary cells under states 00,01,10 are
read, which covers a majority of state coupling faults
[5]. The procedure looks like a 1 shifting its position
from cell to cell throughout the whole memory.

100 ol 1 {o
0|0 |0 Oj0|0
o
0|0 |0 0/0]|0]|
Write o'sin all cells Change the patern
in cell 0 write 1 m cell1 write 1
Read all cells Read ali cells
| J
|
2
0l of1
0]0]0
0|0|O

Change the pattern
in cell 2 write 1
Read all cells

Figure 4. Galloping 1 pattern in Galpat test.
3.3 Check pattern test
This is a simple algorithm developed in an ad hoc

manner [6]. The algorithm starts by filling the
memory array with checkerboard pattern by writing

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

HASSAN: RAM Testing Techniques

0’s and 1’s in alternate cells. the 9 cells memory
array is shown in Figure (5.a), with first pattern. The
wholﬁ memory is read, then cells are complemented
as shown in Figure (5.b), and read again. The fault
coverage of this test procedure is rather low. Cells
stuck-at faults and about 50% of state transition
faults are the only detected faults. Address decoder
faults and state coupling faults are not covered. It is
considered as a fast algorithm, but fault coverage is
not high.

Figure 5. Check pattern test.

3.4 Diagonal pattern test

The strategy of the diagonal pattern is shown in
Figure (6). Instead of shifting a 1 through memory
cells, a complete diagonal of 1s is shifted , or a
complete row or a complete column [5]. Although
this reduces the required number of read/wnte
operations, state coupling faults are not detected.
The sequence will verify that the address decoders
are functional. If muluple cells are selected (due to
capacitive coupling between cell address lines) then
this will be detected as a 1 read back from a cell off
the diagonal. Similarly, if a cell is totally inaccessible,
i.e. always wrongly addressed, then this will appear
as either a 0 in the backgrdund of I’'s oras a 1in the
background of 0’s.

A variation of the diagonal pattern is to progress a
single 1 through the memory array rather than a
diagonal of 1’s, reading the full array after each
progression. The variation is called "walking pattern’
or WALKPAT. Obviously WALKPAT will take
longer, but it is more effective [2].

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

100 o[1]o lojol1
ol1rlo 1
I —_ Ojo II e 0[O0
0|0}l 0/0]0| 1jo]o
Write initial pattern Shift pattern Shift partiern
Read all cells Read all cells Read all cells

Figure 6. Diagonal pattern.

3.5 Static pattern-sensitive-faults test (SPSF Test):

Within the context of pattern sensitivity, different
fault models have been proposed, based on the type
of interaction between the cells[9-11]. In the SPSF
model, a cell is said to be faulty if its contents
change when a certain pattern of 0’s and 1’s exist in
the neighborhood cells. In [11] an algonithm is
proposed to detect five- cell-neighborhood SPSF.
The algorithm is based on tiling the memory array,
and was used later to implement a BIST
arrangement. Figure (7) shows the tiling
arrangements used by this algorithm. The unmarked
cells are the base cells. Each base cell is surrounded
by four characters (A, B, G, D). In the first phase of
the test, which uses the tiling arrangement of Figure
(7.a), the base cells are kept fixed at logic 0. The
five-cell-neighborhood patterns are applied to the
base cells using all four-tuples (16 patterns),
consisting of variables A, B, C, and D. The base
cells are read after the application of each pattern.
The'second phase uses the tiling arrangement of
Figure (7.b), and the above process is repeated.
Then both phases are repeated with the base cells at
logic 1. The algorithm is considered near-optimal in

fault detection of SPSF.

3.6 Marching 1/0 test

Perhaps this is the most widely used test due to its
simplicity coupled with a moderate fault coverage
[7]. The algorithm starts by initializing all memory
cells to 0, then scans the memory cells in ascending
and descending orders. For each cell, scanning
involves reading the cell for the expected value,
writing the complement value, and reading it again.
The algorithm of the test is given below:

B 131

HASSAN: RAM Testing Techniques

’ total number of memory cells is N
for i=1 to N
write 0 in cell (i)
continue
I Ascending loop
for i=1 to N
read cell (i)
if contents=0 continue else Error
write 1 to cell (1)
read cell (1)
if contents=1 continue else Error
continue
...... Descending loop
for i=N to 1
read cell (i)
if contents=1 continue else Error
write 0 to cell (I)
read cell (i)
if contents=0 continue else Error
continue
End

sure 7. Tiling a memory array for the static-
pattern-sensitive fault test
a- phase one b- phase two.

The idea of the algorithm is that, while scanning
the memory in ascending order, any direct coupling
between the current cell and a higher address is
detected when reading the latter. Also any error in
the higher address cell due to decoder faults will also
be detected. In the same way, scanning memory in

descending order detects all the effects on lower
address cells.

B 132

3.7 Modified Marching 1/0 test

Dekker et al. [12],[13]have presented a modified
version of the previous algorithm to cover 100% of
the possible RAM faults. The algorithm covers all
stuck-at faults, state transition faults, state coupling
faults and decoder faults.

Each memory cell is initialized to 0 then read back
to detect stuck-at 1 faults, and state 00 coupling for
any two cells. Two cycles are then performed, one
for each half of the total memory array. For each
half, a 1 is written in each memory cell and read
back to detect any cell stuck-at 0 fault, and state 11
coupling for any two cells. Also state transition from
0 -> 1 is detected. The operation is repeated in a
second loop to detect any state transition faults from
1->0.

The procedure is represented by the following
algorithm which contains two loops. In each loop,
two cycles exist, one for each half of memory array.
Variable I is used to represent the cells in the first
half from 1 to N/2, variable J for the cells in the
second half from N/2+1 to N, it is clear that the two
variables are related with j =N+1-i in both loops.

. total number of memory cells is N’
for i=1 ©© N .
vuil€ O irl CCU (l)
read cell &)
if coatents=0 continue else Error
coatinue

for i=1 to (N/2)
) =N+14i
write 1 in cell (i)
read cell (i)
if contents=1 continue else Eror
write 1 in cell (J)
read cell (])
if contents=1 continue else Error
continue
“Second Loop with Opposite Values’
for i= (N/2) to 1
J =N+1-i
write 0 in cell (I)
read cell (1)
if contents=0 continue else Error
write 0 to cell (J)
read cell (])
if contents=0 continue else Error
continue

End

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

HASSAN: RAM Testing Techniques

4. COMPARATIVE STUDY

Any RAM can be tested with any of the previous
algorithms, irrespective of its type static or dynamic.
Although some algorithms were applied on certain
memory type, static or dynamic, this does not limit
the generality of the algorithm [5]. It should be clear
that not all RAMs exhibit all the previous mentioned
faults. The test programmer should have a good

understanding of the possible failures for a particular
RAM. Unfortunately, in a user environment, test
algorithm for certain RAM have to be developed
with little, or none, knowledge of the internal
organization of the memory array.

To help the test programmer in choosmg a test
which is suitable for his needs and secures certain
target fault coverage, I present Table (1) which
compares the previous test algorithms from point of
view of their fault coverage. '

Table 1. Comparison of fault coverage between RAM testing methods.

- .Method Stuck fault| Decoder fault State ‘Pattern -State Coupling
. of Test Transition Fault| sensitive faults
{|SimpleR/W yes - yes - -
GALPAT yes yes yes ’ yes yes
Check Pattern yes - yes* - -
Diagonal . yes yes yes* - =
SPSF Test yes - -- yes -
Marching 1/0 yes » yes yes - -
Mod. Marching 1/0 ' yes yes yes “yes yes

| VES. soss 100% fault detection
yes* 50% fault detection
ER— fault undetectable

To give the test programmer the feeling of the
time needed by each test, table (2) shows the
.analytical formula that represents the complexity of
each test, where n represents the number of memory
cells. Assuming that we have a tester running at 10
Mhz, the test time for each algorithm is also given.

Table 2. Test complexity and test time for the
different test methods.

Method of Test | Complexity | 1 Mbits Test Time

Simple R/W 4n 04 s

GALPAT 4n? 11 hours
Diagonal 4n 04 s
SPSF Test 4n? 04 s
Marching 1/0 4n 06 s
Mod. Marching 1/0 6n 0.7 s

7n
Alexandria

Engineering Journal, Vol. 34, No. 4, October 1995

I have applied the various test methods presented
earlier on 128 KByte RAM. The memory used was
a part of an IBM compatible computer memory
space. According to the memory map, the chosen
target test area lies in the address range from
1635:0200 to 2655:FFFF which is a part of the user
area. The used computer had an operating speed
33MHz, CPU 386DX, and 10 ns RAM access time.
The different algorithms were written in assembly

"'languagc using IBM Microsoft Assembler. Test

times were found using DOS INT?21 function 2C
which delivers the time in hundredths of seconds.
The test times obtained are as follows:

B3

HASSAN: RAM Testing Techniques

Simple R/W| GALPAT Check Diagonal | SPSF Test | Marching Mod.
Pattern 1/0 Marching

1/0

04 S > 1000 S 0.5S 370 S 0.7 S 09 S 138

5. BUILT-IN SELF TEST (BIST) TECHNIQUES

For logic circuits, a random test pattern is often
applied and the output response is compacted using
linear- feedback shift register. For RAMs, however,
random patterns are not as effective, this is due to
the pattern sensitivity characteristic of RAMs
[18-19], so few random testing approaches have been
developed for RAMs. Yamada [14] performed an
analysis about the probability of fault detection when
using random test patterns applied to RAMs. His
results have shown that, for the same fault coverage,
the test length for RAMs using random patterns is
20 umes longer than the marching test. In [20], a
comparison was done between the efficiency of
random pattern versus deterministic pattern testing
of RAMs. The most interesting results was obtained
when comparing test times for PSFs involving
influential cells anywhere. Deterministic algorithms
require (n+ 32n log n) time. On the contrary, a
random testing requires a test time which remains
linear as a function of n : 447n. Practically the fault
model of influential cells anywhere is complicated,
the five-cell- neighborhood is the most common
used fault model in PSFs analysis. In this model,
random test length is 1200n while that of
deterministic test is 195n [20].

Previously, BIST logic design was driven in an ad
hoc manner, it means, each BIST design is
applicable only for a specific test algorithm which is
related to a specific functional circuitry. New BIST
design should be performed for each new algorithm
realized. Much work was devoted to implementing
features common to all test algorithms.

5.1 BIST memory architecture

Memory design engineers, usually, are restricted
with design rules that require the maximization of
the number of cells in a chip while minimizing the
memory access time. This imposes hard constraints
on the BIST logic designer. For example, the BIST
designer tries to minimize the area occupied by the

B 134

BIST hardware, the number of additional pins
required, and the required test time. A generalized
BIST memory architecture is given in Figure (8), it
can be viewed as consisting of three modules [6] :

Row address Enable

Col address Ensble
i _ﬂ Timing sad contral module l

Address generetian maodule

Data
genciatior.

MEMORY

Cell Aoy

RESUIS] D212

1
parison

Figure 8. General block diagram of BIST logic for
RAM:s.

The control module:

This part starts and stops testing and supervises
the control flow of the test algorithm. It can be
implemented either using micro code or random
logic. Although random logic design offers a high
speed, recent designs has preferred micro code
specially in large RAMs. This is mainly due to the
less area overhead.

A secondary job for the control module is to set the
BIST logic inactive during the normal mode of
operation. The address generation module:

In most designs, the address generation is done
using linear-feedback shift registers, counters or
registers. Response verification module:

This unit produces the test patterns to be written
in the cells. This module varies according to the test
architecture, and different strategies can be used for
data generation and response verification. Linear-
feedback shift registers or counters can be used to
generate test data. The correctness of the read
values can be verified either by comparing them
against the expected values or by signature analysis.

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

HASSAN: RAM Testing Techniques

Although direct comparison is more accurate and can
locate stuck-at faults, signature analysis is simpler in
its hardware realization.

5.2 BIST methods.:

Several BIST implementations have been proposed
by researchers in the field [15]-[19]. Here only some
implementation features are presented and compared
to highlight the principle, a lot more can be found in
literature.

5.2.1 Self testing of dynamic RAMs:

You and Hayes [15] suggested a BIST design using
on- chip logic for test generation and response
evaluation. In this design, the whole memory is
divided into several blocks. In test mode, all
memory cells in a block are connected to form a
circular shift register. The test data, generated from
the test generation logic, follows the marching 1/0
test algorithm. This test data is supplied to all
memory blocks simultaneously. The on-chip logic
scans all .the blocks in parallel by concurrently
shifting the data in the different blocks. After that,
the scanned data and the responses from the
different blocks are compared wusing on-chip
comparison logic to detect a fault. The fault
coverage of this approach is the same as that of the
marching 1/0 test algorithm given in table(1). Since
many blocks are tested in parallel and multiple bits
of a block are accessed simultaneously, this scheme
detects ‘also a class of pattern sensitive faults in
which “a write operation becomes' faulty in the
presenice of a few specific patterns in the cell’s
adjacent cells. The hardware overhead in this design
is relatively high. For 1-Mbit RAM, this overhead is
about 5%. Figure (9) shows an architecture for two
memory blocks in this implementation.

5.2.2 Parallel test using signature analyzer

Sridhar [16], proposed a scheme that uses a parallel
signature analyzer (PSA)to access bit lines from
different memory arrays simultaneously. The
analyzer operates in three modes: the scan mode, the
write mode, and the signature read mode. The scan
mode is used to load the analyzer with specific test
pattern serially, it is also used to scan out the

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

signature at the end of the test. In the write mode,
the value stored in the analyzer is written to line bits
in parallel. In the signature mode, memory cells
contents are read and a new signature is generated
which determines if an error has happened.

Storage Amay
Row -
o Dec | Modified Sease Amp -
Address
Row
Storage Armay
Data
+ 256
Comy Armray Das |
Self-Testing Col Dec Buffer ‘
C Array
} 256
Conwol__|' Refresh Storage Amay Test
Generator
Cors | | mon (e
Timing Le{ Dec | Modified Sense Amp - Ervor laich
L}
Storage Amay I
Tes:
Emor En!

Figure 9. BIST of dynamic RAMs.

The major problem in the previous scheme is that
it requires an external tester to scan in the data,
which makes it not a fully BIST scheme. Another
problem is the low fault coverage offered by the use
of the marching test algorithm. Estimated area
overhead for a 256-kilobit DRAM is 1 to 2.2%, while
for 64-kilobit SRAM, it is 1.8 to 2.9%.

5.2.3 Memory partitioning method:

Another BIST scheme was proposed by Jarwala
and Pradhan [17]. They partitioned the memory into
small blocks and accessed them in parallel using a
data bus. The partitioned memory blocks realize an
H-tree through a set of comparators and switches
between the blocks. The design was called the "
TRAM".

In the TRAM architecture a RAM of size M=2m
(m is the number of address lines) is divided into
modules, which appears as a leaf node in a binary
tree, Figure (10). Two types of nodes exist : memory
nodes and switch nodes. The memory nodes have
the cell array based on the traditional four-quadrant’
organization . Each switch node is a simple
1-out-of-2 decoder with buffers. Any test algorithm

B 135

HASSAN: RAM Testing Techniques

can. be used with the proposed method, and
according to its choice, the fault coverage and the
test patterns are determined. The testing procedure
starts by writing the test patterns to all RAM nodes
in parallel. During the read/verify part of the
algorithm, the tester performs a read. All the nodes
send their data to the comparators. This enables the
data output of neighboring nodes to be compared.
Any disagreement results in the FAIL signal being
activated. If all the nodes agree on the outcome of a
particular test, then they are all fault free.
Unfortunately, the hardware overhead in this
implementation is significant. For 1-Mbit RAM the
hardware overhead i1s 15% when memory is
partitioned into 8 blocks each of 128-kbits.

Memory Array

1 T
+ } B Comparator * 1
I | |

Test Bus

.

e

Figure 10. TRAM architecture for

partitions.

16 blocks

5.2.4 Comparison between BIST methods.

The most negative aspect of all BIST methods is
the extra hardware required. Generally, overhead is
expressed as a percentage in comparison to the total
memory area. We should be careful because area
overhead can not be considered a sharp evidence
about certain method efficiency. For example 10%
overhead in 16-kbit memory can be acceptable,

B 136

while the same overhead percent is not acceptable
for 16-Mbit memory. Table (3) compares the
previous three implementations.

Another drawback in BIST designs is the
degradation in performance. The extra hardware
increases parasitic capacitance which cause a large
delay during normal operation. In some designs,
sense amplifiers and address decoders are modified.
This also increases the access time during normal
operation.

Since SRAMs and DRAMs have a difference in
their basic cell structure, some BIST arrangements
were developed to work only with SRAMs while
others to work with DRAMs and takes into account
the additional refresh circuitry, also other
arrangements work with both RAM types Table (3).

Table 3. Comparison of BIST implementations.

Type of RAM |Area Overahead
High, for 1-Mbit

Bist implementation

Self testing of DRAMS |DRAM

RAM it is 5%
Parallel test using SA |DRAM. SRAM [High for several
Mbits RAMs
Partitioning method DRAM Very high, for 1-Mbit
RAM it is 15%

6. CONCLUSION

RAM testing is extremely time consuming process.
For large RAMs, testing time should be considered
the critical factor for estimating test algorithm
efficiency. Here I have reviewed the common test
methods and I have tried to highlight the points of
strength and weakness in each. According to tables
(1),(2),(3) the user is advised to choose the suitable
test method for his fault model and also estimate
accurately the test time according to the test
complexity. Various design methods to enhance
testability are also presented. The basic idea in all
BIST techniques is the divide and conquer strategy,
it means, memory is partitioned into smaller blocks
which are tested separately. Each approach has its
own advantages and drawbacks, but it seems that the
most important comparison criteria is the area
overhead.

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

HASSAN: RAM Testing Techniques

REFERENCES

[1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

9]

[10]

[11]

E. Luque et al., "Fault-tolerant memory with
content- recovery capability", IEEE Proc., Vol.
128, Pt. E, No. 1, Jan. 1981, pp. 7-12.
R.G. Bennetts, "Techniques for testing
microprocessor boards", IEEE Proc., Vol. 128, Pt.
A, No. 7, Oct. 1981, pp. 673-691.
J. Savir, W.H. McAnney and S.R. Vecchio,
"Testing for coupled cells in Random Access
Memories", IEEE Trans. Comp., Vol. 40, No. 10,
pp-1177-1180, Oct. 1991.
M. Abramovici, M. Breuer and A.D. Friedman,
Digital systems testing and testable design,
Computer Science Press, 1990.
R. Rajsuman, Digital hardware testing:
Transistor- level fault, modeling and testing,
Artech House Inc., 1992.
M. Franklin and KK. Saluja,
self-testing of random access
Computer, pp.45- 56, oct. 1990.
AJ. van de Goor and C.A. Verruit, "An
Overview of Deterministic Functional RAM
Chip Testing", ACM Computing Surveys, Vol. 22,
No. 1, pp. 5-33, Mar. 1990.
R. Nair, S.M. Thatte and J.A. Abraham,
"Efficient Algorithms for Testing Semiconductor
Random Access Memories", IEEE Trans. Comp.,
27(6), pp- 572-576, June 1978.
J.P. Hayes, "Detection of Pattern Sensitive
Faults in Random Access Memories", IEEE
Trans. Comp., 24(2), pp. 150-157, Feb. 1975.
J.P.Hayes, "T'esting Memornies for Single Cell
Pattern Sensitive Faults", IEEE Trans. Comp.,
29(3), pp- 249-254, March 1980.
K.K. Saluja and K. Kinoshita, "Test pattern
generation for API faults in RAM", IEEE
Trans. Comp., Vol. c-34, NO.3 pp. 284-287,
March 1985.

"Built-in
memories",

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

R. Dekker, F. Beenker and L. Thijssen, "A
Realistic Fault Model and Test Algorithms for
Static Random Access Memories", IEEE Trans.
CAD, 9(6), pp. 567-572, June 1990.

R. Dekker, F. Beenker. "Fault Modeling and
Test Algorithm Development for Static
Random Access Memories", Proc. Int. Test
Conf., pp. 343-352, 1988.

T. Yamada, M. Saito and Y. Kasuya, "Test
generation method for highly sequential
circuits", Proc. Compcon, pp. 104-107, 1979.
Y. You and J.P. Hayes, "A self-testing dynamic
RAM chip", IEEE Journal of Solid-state circuits,
20(1), pp. 428-435, Feb. 1985.

T. Sridhar, "A new parallel test approach for
large memories", IEEE design and Test, pp-
15-22, Aug. 1986.

N.T. Jarwala and D.K. Pradham, "TRAM: a
design methodology for high performance,
easily testable multimegabit RAMs", IEEE
Trans. Comp., 37(10), pp. 1235- 1250, Oct.
1988.

E.J. McCluskey, "Built-in self-test techniques",
IEEE Design & Test of Computers, pp. 21-27,
April 1985.

H. Fujiwara et al., "Test research in Japan",
IEEE Design & Test of Computers, pp. 60-76,
Oct. 1988.

R. David, A. Fuentes B. Courtois, "Random
pattern testing versus deterministic testing of
RAM’s", IEEE Trans. Comp., Vol. 38, No. 5,
pp- 637-650, May 1989.

B 137

