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ABSTRACT

The Global Positioning System (GPS) represents the most effective new technique in modern
surveying. The present work is devoted mainly to demonstrate the use and potential of GPS for
vertical control in surveying works. The main objective of the present study is to investigate the
reliability and potential of the GPS technique as compared to the classic technique for performing
the vertical control. The prospects for vertical control using GPS data should be thoroughly
investigated, for its importance in many surveying purpose. The Potential of the Global Positioning
System Data for vertical control is presented and thoroughly investigated. The Sources of errors in

GPS is introduced.
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1. INTRODUCTION

Although an accurate method for height
determination, classical leveling is costly, time
consuming, laborious, and tedious, especially when
applied in areas with large height differences,
between points that are large distances apart,
mountainous terrain, or restricted because of the lack
of inter visibility. The advent of the Global
Positioning System (GPS) has alleviated such issue
[1] and offered a considerable solution for this
problem.

In their orbits, GPS satellites positions are
computed with respect to a reference ellipsoid, that
best approximates globally the shape of the earth in
a purely mathematical concept. This reference
ellipsoid, adopted by the GPS since January 1987, is
the world Geodetic System of 1984 which known by
(WGS84) [2].

2. PRINCIPLES

Heights, as already known by surveyors and other
users which are used within the standard engineering
operational projects or routine mapping missions, are
related to the Geoid rather than the ellipsoid. The
former being an invisible physical surface which is
difficult to the consistently located and to be
mathematically represented. However, it represents
the actual irregular shape of the earth, and defined
as the equipotential surface approximated by the

Mean Sea Level (M.S.L) under equilibrium with the
gravity field of the earth.

There is, therefore, a lot of sense in using the
arthometric height, the height of a point with respect
to the geoid measured along the slightly curved
plumb line normal to the geoid, as shown in Figure

2) [31.

/

Figure 1. A point P shown relative to a geocentric
ellipsoid and its cartesian coordinate system (XYZ).
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The relation between the GPS - derived ellipsoidal
height (h) and the geoid - referenced orthometric
height (H) involves the Geoid Undulation (N), the
geoid - ellipsoid separation known as the geoidal
height. It is shown in a gross exaggeration in Figure

(2).
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Figure 2. Part of that merdian of geocentric
ellipsoid containing point P.

When the geoid undulation is accurately evaluated,
the orthometric height can then be easily
determined by subtracting the undulation from the
ellipsoidal height. This can be performed either by
the single point (absolute) approach, Figure (3-a) [4]:

In which the mathematical model is given by :
H=h-N (1)

or by the differenual (relative) approach, Figure (3-
b), in which the mathematical model is given by:

AH=Ah-AN (2)

Obviously, the relative approach is much more
precise than the absolute approach due to the
followings:

1. As the difference in the ellipsoidal height,

measured simultaneously by the GPS data
between two points, are much more accurate than
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the absolute ellipsoidal height at either of the
terminals because of the presence of the same
systematic errors at the terminals which cancel
the difference.

2. AN is much more precise than N at either of the
terminals. The precision required for H will
depend upon the purpose for which the heights
are being used. Some tasks will only require H
for a few meters, in such the constraints on the
determinations of h and N can be relaxed. For
the highest order requirements, the precision to
which Ah can be found, limits the precision of
AH and dictates the precision requirements for
AN which need to match is precision so that the
precision of AH will not be seriously eroded [S].

For simplicity, h and H in Eq (1) and Figure (3)
are considered to be along the common vertical but
really, H is normal to the geoid while h is normal to
the ellipsoid. The angle between the normal to the
geoid and the normal to the ellipsoid is commonly
referred to as The Deflection Of The Vertical which
does not exceed 30 arc seconds in most areas and
therefore its effect can be easily ignered compared
to present uncertainties of geoid undulation
estimates.
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Figure 3. Relationship between ellipsoidal,
orthometric, and geoidal heights for relative
heighting.

Obviously, the errors in evaluating H or AH totally
depend mainly upon the accuracy of the parameters
used in its evaluation; Viz. the ellipsoidal height and
the geoid undulation [3,4].

3. GPS - DERIVED ELLIPSOIDAL HEIGHTS

The results of many tests and operational projects
have clearly shown that GPS survey methods can
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efficiently replace classical horizontal terrestrial
survey methods comparable accuracies have also
been achieved for GPS - derived ellipsoidal height
differences. Such differences may be obtained with
uncertainties approaching (0.2 cm + 0.01 - 0.1 ppm).
These uncertainties depend on the significance of
error sources. Such errors associated with GPS data
can be minimized by adhering to appropriate
specifications and procedures [3].

4- ERROR’S EFFECT ON GPS -HEIGHTING

Various kinds of errors affect GPS -derived
ellipsoidal heights. In the last few years, research
works have been directed towards evaluating and
modeling of such errors. Next, errors affecting
GPS-Heighting are introduced in some detail
together with different studies in this concern.

4-1 Effect of the Geometry
Configuration

of the Satellite

Santerre (1989), conducted an investigation of the
impact of GPS Satellite sky distribution on the
propagation of errors in accurate relative positioning,
by studying the behavior of covariance matrnx, the
confidence ellipsoid, and correlation coefficients in
a least squares solution as function of satellite sky
distribution, station coordinates, clock and
tropospheric zenith delay. It was found that even if
the system 1s fully operational, unmodelled errors
will stll significantly affect the final solution [7].

4-2 Effect of the Orbital Errors

The error 1n Satellites orbit may be defined by its
three components :

- Along-track, the direction of motion.
- Radial, the direction from satellite to earth, and
- Across-track (perpendicular to the other two).

Beutler et al (1989) found out that the along track
component has the greatest impact among others in
height determination. In the particular case of a
single satellite passing through the zenith of a
ground station, it was found that an along track error
of 1" in the plane of the observer as viewed from the
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ground station will result in a rotation of a network
by 1" about an axis perpendicular to the orbit plane
affecting the height component. It was also found
that the error is maximum when the direction of the
baseline is the same as the direction of the orbit
plane [5,6].

The height error may be expressed as [6]:

ey = cos (4, - A7) -‘-‘p—s b 3)

where:

e,,: the magnitude of the height error

A, : the azimuth of the orbital plane of the satellite

Az the azimuth of the baseline
A s: the along - track error
b: the baseline length

p: range of the satellite

Table 1. shows the effect of orbital uncertainty on
the baseline height differences.

Table 1. Effect of Orbit Uncertainties on baseline
height difference.

" As rho Height Error"
20 m |20 000 km 1 ppm
40 m |20 000 km 2 ppm
4.3 Effect of Troposphere

The Troposphere is generally the major source of
error in height determination. Beutler et al (1987 b)
reported that an error of Imm in the zenith distance
of the relative tropospheric refraction will cause a
height error of approximately 2.9 mm [6].

Two methods have been suggested by Grant
(1987) to minimize error in the heights due to a
deferential residual error in the tropospheric
correction between two stations. The first is to
model such error at each station as a time invariant
error in the solution.

The success of this method will depend on how
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stable the troposphere was during the observing
session. The second method is to model the residual
error’ at each station and at each epoch ‘using a
Kalman filter. The success of this method will
depend on how well the dynamic model reflects the
changing troposphere [5].

In addition, kouba (1987) has adapted experience
with VLBI measurements to introduce a model that
express the effect of wet troposphere on baseline
height differences as [6]:

“

where,

0, ,: the error in height difference in ppm.
constant, taken as 80 mm.

baseline length

the correlation distance usually taken as 30
km.

The effect is shown in Figure (4).

eTw

4.4 Effect of Ionosphere

The effect of the ionospheric delay reaches its
maximum when the satellite is near the horizon and
i1s a minimum when the satellite 1s at the zenith.
Depending upon the separation of the two receivers
and the stability of the i1onosphere, double
differecing phase measurements between station
sites will tend to cancel most of the ionospheric
delay. As the ionospheric delav is frequency
dependent, measurements made simultaneously on
both L1 and L2 frequencies will eliminate most or
almost all of the ionospheric correction. However a
residual error in the relative ionospheric delay
between two stations will be reflected as an error in
the GPS height difference. This would tend to occur

over long baseline, particularly those oriented north
- south [5,6,7].

4.5 Effect of Antenna

The antenna phase center may also be dependent
on the vertical angle to a satellite and this will affect
the height determination. Mitchell et al (1990),
stated that the whole error can only be better
antenna design. Accurately measuring the height of
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the antenna phase center before and after data
collection will probably reduce this effect [5,9].
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Figure 4. The effect of modeling errors of wet
tropospheric refraction on height difference.

4.6 Effect of Multipath and Imaging:

Multipath and Imaging, also has an effect that
depends on the antenna design and the location of
the reflecting surface in the vicinity of the receiver,
which is variable from site to another. Therefore, it
is not possible to determine the magnitude of such
effect. Mulupath effects are site and antenna
independent and therefore will not cancel out when -
double differenced between receivers. However,
Tranquilla (1988) has found that, due to its cyclic
nature, if observation periods are kept longer, 1t will
tend to randomize. On the other hand, Mitchell et al
(1990) stated that its effects can be reduced by the
use of a well designed antenna which minimizes
interference and possibly incorporating an absorbent
ground plane to cut out signal reflection [5,6].

4.7 Effect of Timing

The satellite and receiver clock errors for
differental positioning have three components:

- an epoch offset from the Universal Coordinated
Time (UTC)

- an epoch difference between the two receivers

- a time rate difference between the two receivers
and the satellites.
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An epoch offset from the UTC, common to both
receivers, will result in the satellite ephemerides
being interpolated for incorrect time. King et al
(1985) stated that, the receiver clocks need to be
synchronized to UTC within 7 milliseconds for a
base line error below 1 ppm. If the two receiver
quartz clocks are synchronized to each other within
3 microseconds, that error reduced below 1 cm. The
satellite and receiver clock errors are eliminated by
differencing in the solution for baseline components

[5].
5- THE GPS HEIGHTING STUDY GROUP:

Bar charts of the most important errors affecting
baseline height differences derived by GPS is shown
in Figure (5) for two baseline of length 5 and 50
kilometers. The tropospheric contribution (Utmp) 1S
estimated using Eq. (4) The value 2ppm for
ionospheric delay (g;, ) is estimated using CERN

10Nno
networks reported in Santerre (1989).
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Figure 5. The estimated magnitude of errors (in
parts per million) of height differences.
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The satellite ephemeris is assumed to have an
along track error of 20 m and the effect on height
(0, is estimated using the Eq. (3). The effect of
(0oprg) is estimated from a computer simulation
carried out by Holloway (1988).

Receiver noise and any residual errors (0, 18
estimated as 5 mm irrespective of baseline length.
The total uncertainty of each baseline height (a,p)
is then calculated from [6].

2 - 2 2 2 2 2
oAh_otrop+0ian+oorp+ocord+°nob(5)

In Dec. 1990, another simulation has been
conducted by the GPS Heighting Study Group. The
simulations performed in this study were carried out,
again, on two baseline, 5 and 50 km. long, using the
full 18 satellite constellation for an assumed network.

Figure (6) shows that when the ambiguities are not
resolved, the dominant height error is the
tropospheric error and is proportionally much the
same for both baseline. The receiver noise error is
constant and therefore has a much greater influence
on the shorter line. The other errors are
proportionally very similar to each other. Figure (7)
shows that by resolving the ambiguities correctly the
error in easting coordinates is improved dramatically.
The total receiver noise error has also been
improved. The dominant error for the height
component is still the residual tropospheric error
with the error in the ionosphere and the fixed
station coordinates also being significant.

It is also apparent that the total height error is not
improved whether it was possible for the ambiguities
to be resolved or not, ever though the error in the
easting and northing components are improved [3].

6- EXPERIENCED PRECISION OF
GPS-HEIGHTING

Estimates of precision of GPS-derived ellipsoidal
height differences have been obtained by many
researchers. These estimations are usually quoted as
errors in height over baseline length in parts per
million -A selection is shown in.
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Table 2. .

Author

Engelis and Rapp, 1984
Schwarz and Sederis, 1985

Precision

about 1.6 ppm

3 ppm
2 to 3 ppm Schwarz ct al, 1987
to 3.2 ppm Holloway, 1988

+ (0.5 cm + 1 to 2 ppm)| Zilkoski and Hothem, 1988

1 to 3 ppm Kearsley, 1988b
to 3.5 ppm Leal, 1989
1to 2.5 ppm Klcusberg, 1990

1 ppm Abou-Beih, 1993

7.1 Geopotential Models

The global geoid can be represented by means of
geopotential models, i.e. mathematical models in the
form of spherical harmonics. The coefficients of the
various terms in the series are determined using a
combination of satellite orbit analysis, terrestrial
gravity and N measured by satellite altimetry over
the ocean. The geopotential model for N is
expressed as [5,6]:

n=2 n

oM ]
N—GRggpm(cos.e) ®)

(C*nmcosmA +S*nmsinmA)

Where :

R: is the radius of the spherical model
of the earth.

G: is the mean gravity of the earth.

KM: is the geocentric gravitational
constant times the earth mass.

0,\: are polar distance, longitude.

C’'n,m, $"n,m: are fully normalized potential
coefficients.

Pn,m (cos 6): are legendre polynomials.

n,m: arec degree, order of the spherical

harmonic term.

7.2. Astrogeodetic Levelling

Astro-geodetic levelling results are normally related
to a local ellipsoid.
Therefore, to transform GPS derived (h) into
orthometric height (H), the separation between the
geoid and a geocentric ellipsoid datum is needed.
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Even though they are useful in establishing the
transformation parameters between a local earth
model and the World Geodetic Datum ( WGS84 ),
values of N evaluated from Astro-Geodesy are of
limited use for transforming GPS heights into
orthometric heights. Schwarz et al ( 1987 ) stated
that the astrogeodetic data base is not dense enough,
and the costs to upgrade it would be prohibitive and
only gravimetric methods will therefore be the major
method among others in evaluating the geoid-
ellipsoid separation. Furthermore, Mitchell et al
(1990) stated that the accuracy obtained from such
method is not satisfactory promising as very few
Laplace observations are made today, and the
number must be expected to decrease since GPS is
becoming much more popular [5,8].

8. PROPOSED TECHNIQUE

In recent years, the term Gravimetric methods has
been expanded to include like least squares
collection, mentioned above, which can use
measurements other than gravity anomalies Schwarz
et al ( 1987 ) used certain data types for the
determination of N ; namely a geopotential model,
point or mean gravity anomalies, and a detailed
digital elevation model, and introduced a solution
that can be written as :

N = Ngm + Npg + Ny, 9)
where :
Ngv:  is the contribution of the geopotential
model.
N Ag is the contribution of the gravity anomalies.
N is the contribution of the ellipsoidal

heights.
Similarly, geoid height differences can be written as:
AN = ANGM + ANAg + ANh (10)

Figure (8) shows the different contributions for a
typical geoid of 100 km length in mountainous
terrain. H must be noted that Ngp changes very
smoothly over a distance of 100 km while NAg
represents regional and local geoid features, and N
which changes rapidly specifically in mountainous
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terrain and usually has small amplitudes, represents
wavelength features below 20 km that are caused by
the topography [8].

Figure (9). shows the error, in ppm for each of the
three components. The total error in is clearly
governed by the ey and the other two components
are rather smaller in comparison. Finally the
gravimetric determination of can be done with an
accuracy of about 3ppm for distances between 10
and 100 km which makes it compatible with the
current accuracy of GPS-derived Ah [8].

9. CONCLUSION

The Potential of the Global Position System Data
for vertical control is presented and thoroughly
investigated. The sources of errors in GPS is
introduced.

It is concluded that orthometric height differences
can be determined, from the geoid - ellipsoid
separation and the GPS - derived ellipsoidal heights
using either of the following approaches:

i)  Simply ignoring the geoid ellipsoid separation
will give errors which may be up to 50 ppm.

ii) Using geoid maps, including those representing
astrogeodetic results.

iii) Using geopotential models, which is
inexpensive and suited to an accuracy of about
5 ppm.

iv) Using gravimetric determinations,assumed to
exclude geopotential models alone but to
include all combination methods covered earlier,
would lead to high accuracy of about Zppm.

v) By the geometric methods, i.e. interpolation,
possibly with surface fitting, between other
points at which GPS observations have been
made -and possibly in combination with
methods referred to in (ili), may give an
accuracy of up to 4ppm, or better over shorter
distances.

vi) By a combinations of methods, most
particularly, those at (iv) and (v) to achieve
much better accuracy.

On the other hand, Zilkoski and Hothem (1989)
recommended the following strategies when
levelling networks are used in conjunction with GPS
networks in orthometric height determination [2,9]:

All leveling data used to establish the heights
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should be corrected for known systematic errors.

In additon, Dodson, A. H. and Gerrard, SSM.E.
(1990) investigated leveling with GPS on test
networks throughout England and Wales and
concluded that the GPS- derived orthometric height
differences can achieve accuracies as good as those
produced by tertiary leveling over short distances
and expected that equal accuracies can be
maintained over longer baseline when taking a good
care in processing the field data derived from the
GPS. They suggested that, unlike traditional
levelling, GPS heighting accuracy is less dependent
upon distance. However, they suggested using the
leveling at short distances, i.e. less than 1 km.
Finally the results of many experiences with the
GPS, indicate to a great extend the promising
reliability and accuracy of this new technique for
establishing a precise base for vertical control
operation. Consequently, it can be safely
recommeded to use the GPS as a reliable and
accurate technique for vertical control, taking into
consideration the effect of the arising errors in this
techniques.
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The purpose of this paper is to assess and compare the field positioning methods of horizontal curves
for first- grade roads and railway alignment. Classic and novice methods involving angular
measurements are treated. Mathematical models for error analysis are developed; and comparison
study is made using error ellipses. Keywords: Horizontal curves - Settingout - Accuracy - Error
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1 - INTRODUCTION

Accurate methods of curve setting-out usually
involve angular measurements from one or more
stations; either exclusively or associated with linear
measurements. In this work, three methods of
circular curve ranging are mainly investigated. The
first and second procedures are the well known
traditional methods. " Dual-theodolite method " and
"Deflection angles or Rankine’s method". The third
is the less known novice method of "Optimum point
method". The three methods are evaluated through
a comparative study using the positional error
accuracy determination employing error ellipses
technique.

2 - SETTING OUT PROCEDURES
2.1 Deflection Angles Method (DAM/Rankine’s Method)

A deflection angle to any point on the curve is the
angle at the point of tangency T between the back
tangent and the chord from T, to that point. (see
Figure (1)).

Rankine’s method is based on the principle that
"the deflection angle to any point on a circular curve
is measured by one-half the angle subtended by the
arc from T’y to that point. It is assumed that the
length of the arc is approximately equal to its chord.
The last approximation is very reasonable when the
radius (R) 1s equal or greater than 20 times the chord
length.

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

Let T, I : rear tangent,

T, : point to curve P.C.)

6y, 65 63 , ... the tangential angles or the angles
which each of the successive chords T, P, P, P,, P,
P; etc.

makes with the respective tangent to the curve at
Ty, Py, P, etc.

Y;, Y, Y;, ..ctotal tangential angles or deflection
angles to the point Py, P,, P3, etc. (Punmia, 1975).
4> Ly L3 - = lengths of the chords Ty Py, Py P,, P,

P,,

Figure 1. Rankine’s method.
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From the property of the circle.

angle I'T; P, = half the angle T, OP,
angle T; OP; = 2 6,

In case of chord T P; = arc T, P,
Now, angle 6, = &;—{‘- (Degrees),
©

901,
nR

6, =

In general,

901 .
e_=—1i=, where, ¢, is normal chord.
k3

From the geometry of (Figure (1)), the deflection
angle of the first point P, is equal to its tangential
angle or

T =0,
for the second point P,
angle I'T; P, = half the angle T, OP,
1:C:
angle IT, P, = 6, + 6,
Y2 =61+ 0,
for point P;.
Y3 =6y + 0, + 63,
Generally for point P,
Yn=01+0,+0;+..+80,
In case of equal chords
by=0,=6;=..=06, =86
then v, =§

72"20
and 1y, =n6

C 342

2.2 Dual-Theodolite Method O.P.M.

In this method, two theodolites are used, one at T
and another at T, . This method is used when the
ground is unsuitable for chainage and is based upon
the principle that "the angle between the tangent
and the chord is equal to the angle which that chord
subtends in the opposite segment" (see Figure (2)).

~
Figure 2. Two theodolites method.

Deflection angles to points on curve are the same
as in the previous method. The actual steps of
setting out for both methods can be found out in
many text-books.

2.3 Optimum Point Method

In this method, horizontal curve is set out from a
specific vantage point referred to as optimum point
(OP). Many alternative vantage points can be chosen
for setting- out purposes depending on field
condition and economic consideration, all points
within the curve vicinity are referred to a local
co-ordinate system which has the (OP) as its origin

[S].
Vantage Point
It is defined as the best point which can be chosen

considering cost and/or field conditions for the
ranging out of an entire curve. It is therefore not a

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995



MOUSTAFA, ABDEL-MALEK and ALLAKANY: Accurate Method of Curve Setting, Assessment and Comparison

fixed position. A reference point is chosen to which
any vantage point can be referred and which can
equally serve as a vantage point. Due its dual-role,
this reference point is referred to as the optimum
point (OP).

Choice of optimum point

The (OP) is the best vantage point which can be
chosen for the purpose of ranging out an entire curve
when theoretical and practical application are
considered simultaneously. In other words to satisfy
the above definition, the (OP) should conform to
certain conditions as discussed below.

Figure (3) shows a circular curve AC;d;d,CB, A
is the point of curvature (P.C) and B is the point of
tangency (P.T.). The choice of (OP) is based on the
following conditions:

1. The ratio of two distances from any pair of
corresponding opposite points to the (OP) should
be 1:1.

2. The sum of all distances involved in setting out
should be minimum.

3. To be theoretically and practically versatile in
application, there should be simple relationship
between the OP and other curve parameters for
any type of curve.

Aoé.

—_— 2. -

Figure 3. Determination of the optimum point.

To satisfy these conditions it has been shown [5]
that the optimum point lies somewhere between G
and H.

Two methods can be used in setting out according
to optimum point method. These are summarized in
the following.
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2.3.1 OPM by Radial Angles and Chord Lengths

To set out the curve by this method (Figure (4)),
the instrument is stationed at point (H) and angles
"q" are turned out. The curve points are then fixed
as the inter- sections of the rays and the chord
lengths.

P

LA 4

Figure 4. Concept of radial angles and radial distances.

It 1s very clear that, setting-out curves by using this
approach is analogous to the method of deflection
angles in case of choosing point (G) as the optimum
point. In case of choosing point (H) as optimum
point, double intersection maybe occur between the
chords and the radial lines. Setting out curves by
using deflection angles method (DAM) avoid this
defect even in case of curves with greater deflection
angles.

2.3.2 OPM by Radial Angles and Radial Distances

This involves the use of polar rays. The distance
"d" to the curve point is calculated and the direction
of the line defined by the angle "§" the curve points
are then located by measuring the distances along
the radial lines. The chord length (v) to be used for
setting out procedure is usually known from job
specification (it may be taken 20 m tape length).
Angle "¢" and distance (d) are computed involving
the solution of the respective triangles shown in
Figure (5).

2.3.3 Advantages of the Optimum Point Method

1. Use of (OP) reduces the number of instrument
stations.

2. In case of using (OPM), the location of any curve
point is not strictly dependent on the preceding
point.

3. The (OPM) technique is quite flexible in the
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sense that its computations can be adapted for
other methods of the curve ranging.
4. The (OPM) technique satisfies the different field

conditions. :

Figure S. Concept of radial angles and chord lengths.

3- MATHEMATICAL MODEL FOR ERROR
ANALYSIS

A brief description on the concepts of convariance,
correlation, propagation of variances and covariances
and Error Ellipse Technique is shown in [ 1].

The mathematical models for the three methods
under study are derived in the following sections.

3.1 Deflection Angles/Rankine’s Method

Referring to Figure (6) the mathematical model for
error analysis is developed. Adopting the theodolite
station T is chosen as origin, and the Y-axis as the
tangent at T;.

Figure (6) shows a circular curve T, P, Pyl
T, while ¢}, 1), t3,..ut,, ... are the chords joining the
curve points. Let ¥, ¥,, ¥;,.¥ , etc be the
corresponding angles between the above chords and
the y-axis respectively.

_Referring to Figure (6) the coordinates of the n'P
point, on the curve, P (xpn, an) are

Xpn = ¢ SIn ¥y + 45 sin ¥ +i3 sin W3 +..4, sin W
Ypn=t1€08 ¥ +1; cos ¥y+iz cos ¥a+...+i cos¥ (1)
For simplicity, let Egs. (1) take the form
X =) =ysin®
i=1

. (2)
x"=1z-; =ycos P,
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Figure 6. Deflection angles method coordinates system.
Derivation of the mathematical model

According to the setting out technique, location of
the point P depends on the quantities ¢ and ¥,
(i=1,2,3,..,n) The relation between the bearing angles
¥; and the deflection angles 6, is given by

‘I’i = 05_1 + 03 (3)

the angles 6, are measured separately with equal
precision, then

Og, =0g, =T =0g =0y
LR @
for all values of i andj

°61=°a,’0'0
In case of adopting equal chords of length ¢ let o, be
the standard deviation of the measured chord, then

YERLER= L=t } (S)

o, =0, ea. » g 5g

Since these chords are measured independency then
oy = 0.0

Differentiating Eqs. (3) partially with respect to the
angles 6, and substituting into variance-covariance
propagation equations [1] gives:

2 2
O.l =0y
oi’ = 02'01 =.. o:_ =2 o:,‘ (6)

ST T T Tl Tt PR
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For all values of i and j, (except i = j+1), values of
Oy \I’Z_’ 0.0. ) )

For circular curve with peg interval of length ¢, the
deflection angles 6, and the bearing angles ¥; are
given by:

6, =i % and ¥, = g (2i-1) %)

where D is the degree of the curve.

By differentiating equations (2) partially with
respect to the quantities ¢; and ¥; and substituting
into variances- covariances equations, taking
equations (3,4,5,6 and 7) into consideration, the
mathematical model of positioning error for a general
point P on the curve is given by:

O:'. =03;| +a?mi+2g(ni+A‘)

05_ =03" -H::fni +2g(m,+B) (8)
2

% ~%n, +C,(0; -2g) gE,

where

m; = ¥ sin’ [.‘23(2i-1)]

n =3y cos? [2(2i-1)]
1=2 2

A=Y sin? [12)-(2i—l)]sin[%(2i—3)]

1=2

B;=)
1=2

cos? [-‘23 Qi- 1)]cos[-’23 Qi-3)]

C; = %i sin [DQi-1)]

1=2
E;= Y sin [2@i-1Dlcos[2i-3)]
12 2 2
D,. . D,..
+ COS [-5(21 l)]sm[;(21 K]}

and
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g = o

3.2 Dual Theodolite Method
Development of mathematical model
Choice of coordinate system:

Choosing the long chord T; T, and the
perpendicular to it at point T (P.C.) as the two axes
x and y respectively (Figure (7).

Figure 7. Two theodolites method Co-ordinates system.

The coordinates of the points T (X 1,y1¢) and T}
(X2 YT2) are (0,0) and (L,0) respectively, where L
denotes the length of the long chord (T T)).

The coordinates of the point P(x,y,) are given by
{71
_ (Y, - Ypp) +xp cotB + X, cotA

X" cotA +cotB ©)
Y = ("n”"n) +Y, cotB +YnootA)
4 cotA +cotB

Substituting XT] = 0, YT] = O, XTZ = L and YTZ =
0 into Egs. (9) we get
- LeotA
x" cotA +cotB
_ L
P cotA +cotB

(10)

Equations (9) may be simplified to

X’=kcotA
Yp=k

(11)
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where

= —
CotA +cotB
To obtain variances and covariance for the
positioning of point P, differentiating Eqgs. (10)
partially with respect to the two measured quantities
A and B, substituting into variances and covariances
equations gives:

a:’ =q (cosec* Acot? B o2 +cosec* Beot? A o
oi' =q (cosec*A 6} +cosec’B op)

3 (12)

ov=q[—cosec‘AcotBoi+cosec‘BcotAo;)

+cosec? A cosec?Ba ,p (cotA - cotB)]
where

L2
d (cotA +cotB)*

Egs. (12) constitute a mathematical model which

deter- mines the variances and covariance o ,
for the located point P.
-Since the two orientation angles A and B are
measured separately and error in measuring the first
angle A causes no effect in measuring B, it follows
that, there is no correlation between A and B.

2
c’p and o“.

Les ag =00 (13)
A substitution of Egs. (13) in Egs. (12) gives
c:’=q(cosec‘AcotzBoi +cosec*Beot? A o5

ai=q(cosec‘Aoi+cosec‘B ad) (14)

oxy'=q(—cosec‘BcotAo§—cosec‘AcotBo;)

Further, the angles A and B are assumed to be
measured with equal precision. This gives

Gp=0g=0 (15)
where

¢ is the angular standard deviation.
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Substituting from Eq. (15) into Eqs. (14) one gets

o:' =q 0%(cosec* Acot’ B +cosec* Beot? A
a:’=qoz(oosec‘A +cosec’B) ' (16)

0,y =q0”(cosec'BeotA -cosec*AcotB
»

For the circular curve, the sum of the two angles A
and B is equal to half the central angle (4) i.e. (A +

B = %) and this leads to

2 _ A
ox.-qozcosec‘Acotz(—z— A)
+cosect (.';. — A)co2A]
ai'sqaz[oosec‘A +oosec‘(%——A)] 17)
A
Oy, =4 o’[cosec‘(—z— - A)cotA

—cosec‘A(cot(—g— 8]

Replacing angle A with B in Egs. (17) gives the

variances and covariance for the corresponding

opposite point p’.

On inspecting the resulting error equations (17) we

find that

i.  for curves having the central angle (A) less than
90, and standard deviation in x-direction (g,) is
always greater than that in the y-direction (ay).

ii. For central angle (A = 90), it is easy to prove
that the error in x-direction o, is a constant
value equal to (L. o).

iii. For the summit point, where A = B = @, position
on determination referred to x and y directions
is correlation-free. This can be proved as follows

o2 =2q(cosec*8)cotB(o?)
o} =2q(cosec*8)(o?) (18)
oxy=0.0
and if A = 90°, then

0 = yz =8qug, (19)

Eq. (19) shows that positioning determination of
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the summit point in case of (A = 90) is accomplished
with equal accuracy in the x and y directions.

Also, in case of 0a = op it Is easy to prove that, the
orientation of the error ellipse does not depend on
the precision of the angular measurements (o).

It is evident from Egs. (17), in order to determine
the two corresponding points p, p’ with same
positioning accuracy ( (0,,=0; .0, =0, and e
the two theodolites, used for laying out the curve,
must be of the same precision. This was satisfied by

the assumption given in Eq. (15).
3.3 Optimum Point Method (Version I)
Choice of coordinate system:

choosing the long chord and the perpendicular
bisector as two arbitrary axes x and y respectively
where point (OP) is the origin.

Let point P(x,y) be located on the curve, Figure
(8), to establish the point (P), distance d is measured
along the line making an angle 6 with the x-axes.
Distance d and angle @ are calculated by using
simple coordinate geometry. The coordinates of
point (P) are
x-dc?)se} 20)
y=dsin®

Variance and covariance for the positioning of point
P can be obtained by differentiating Egs. (20)
partially with respect to the measured quantities d
and 6, substituting into variance and covariance
equations:

02 =cos?8 o’ + d2sin?6 o
c:= i 2So:+d200s26¢): (21)

o, =cosesinﬂ(oi -d2ol

Examining the resulting equations (21) the
following remarks can be given:

1) Positioning accuracy for any located point on the
curve depends on the precision of both angular
and linear measurements.

1) Linear measurements error causes the serious
positioning error for points on the curve because
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such an error shifts the points away of the curve
path ie. radially inward or outward.

Figure 8. Setting out by optimum point (version I).

On the other hand, angular error causes an
insignificant position error since it shifts the located
point tangentially to the curve path.

3.4 OPTIMUM POINT METHOD (Version II)

In this method, the instrument is positioned at
(OP’) Figure (9). For determining variance and
covariance for the locating points, the same
procedure used in the previous methods is followed,
Angles 6,’, 6,’, 65’, ...0,’ and distance d;’, d,’, d,’, ...
d,’ are measured to establish the points Pz’,
P;'... P’ on the curve respectively. The
mathematical model for obtaining the expected
variance and covariance can be given by replacing 6
and d with 6’ and d’, in equation (21) respectively,
then we get.

2 _ 20" 2 20:.207 2
0, “=cos*0" o, “+d"*sin"*0 0,
0, =sin’8" 0,7 +d?cos?8" 0,2 (22)

a{y=sh10'cose'(od'2—d’2oo'2)
4- ANALYSIS OF RESULTS

Error ellipses were constructed according to the
above mathematical models for the cases under
study. Variations were adopted in degree of curve
and observational accuracy. The cases chosen here
include only curves with degree 6°, at observational
accuracy ¢ (length) = 0.005 m, ¢ (angle) = 10"
Figures (10-a), (10-b), (10), and (10-d) show the
distribution of error ellipses.
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op
Figure 9. Setting out by optimum point (version II).
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Figure 10-a.. Two theodolites method.
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Figure 10-b. Optimum point method (I).

Graphical representation of error ellipses provides
an illustration of the accuracy with which any point
on a curve is positioned. Visual inspection of the
distribution of error ellipses along the curve gives an
invaluable aid for judging of setting out accuracy.

Radial component of error, o, , which can be scaled
from the error ellipse graph is the most significant
component of standard deviation. It gives a reliable
indication about the accuracy of setting out along the
curve. On the other hand, a large error component
on the direction of the curve (tangential component)
would be insignificant since the located point would
stll lie on the curve. :

The maximum, minimum and average values of
the radial error component o, among points
distributed along the curve could be used as very
convenient criteria to indicate homogeneity of
positioning accuracy for different methods under
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| inve‘sti gation.
5- CONCLUSION

The methods under study can be assessed as
follows:

5.1 Rankine’s Method

i) Located points by using this method are
dependent on each other since they are to be set
out in chain. Accumulation of error can be
observed as we move away from the starting
point of the curve. Major axes of the error ellipses
on the curve run approximately along the line
joining this point with the starting point.

i1) Symmetrically positioned points are located with
different accuracy.

5.2 Dual Theodolite Method

i)  Major axes of the error ellipses are tangential to

the curve path while minor axes are
perpendicular which is ideal for positioning
accuracy.

1) For curves with larger radii, larger sizes of the
error ellipses can be observed.

ni) The method also shows adequate homogeneity
of accuracy distribution since radial components
(0,) are nearly equal along the curve.

1v) Symmetrically positioned points with respect to
midpoint of the curve are located with the same
positioning accuracy.

v) As measurement’s precision increases, positioning

accuracy for located points increases.

5.3 Optimum Point Method
5.3.1 Version I

The corresponding cases for optimum point
method version I, where the instrurment position lies
on the mid- point of the long chord, are represented
in figure (10-c). The following remarks can be given:
1. Symmetrical point about the perpendicular

bisector of long chord are located with equal
accuracy.

Alexandria Engi‘vneering Journal, Vol. 34, No. 4, October 1995



MOUSTAFA, ABDEL-MALEK and ALLAKANY: Accurate Method of Curve Setting, Assessment and Comparison

i. Linear error is the most significant factor
affecting the positioning accuracy of the located
points.

ni. Increasing the angular precision, makes the error
ellipses more slim. While increasing the linear
precision makes the major axes shorter.

iv. In case of smaller radii, onientation of error
ellipses changes in such a way that the major
axis turns quickly perpendicular to the curve
path as compared with cases of greater radii

SCALE OF O ¢
ERROR ELLIPSE

7'1*‘;2__,9 —«3\6:1<
:_‘,.:;,.’ ~ i

20 oc 2c
PLAN SCALE
‘ {Meters )

Figure 10-c. By optimum point (II).
5.3.2 Version II

i.  Symmetrical points about the perpendicular
bisector of long chord are located with equal
accuracy.

i. This method exhibits better positioning
accuracy since the major axes of error ellipses go
nearly tangential to the curve, especially in case
of greater radii. Also it shows smaller radial error
component s as compared with optimum point
version I.

. As in the previous method (version I),
increasing the precision of linear measurements
causes a significant decrease in the length of
major axes of the error ellipses and the
increasing the angular precision leads to more
slim ellipses which means a smaller radial
component of error.

GENERAL

1. As expected, an increase in the precision of
measurements used in setting out procedure,
would increase the positioning accuracy.
However, the effect is not always significant
depending on the case.
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2. For both cases of the optimum point method
version I, where the instrument position lies on
the mid-point of the long chord, and version II
where the instrument position lies on the middle
of the curve, the ellipse distribution is
symmetrical with respect to the middle of the
curve. Moreover there is no significant
accumulation of error due to the fact that points
on curve are located independently. Generally,
version 1l is better than version I for the
following reasons:

i) Error ellipses are generally oriented tangental to
the curve in the case of version II and
perpendicular to the curve in the case of version
I. Therefore, an alignment using version II
should be preferred due to the smaller radial error
component g,.

i) Linear error is the most significant
contributing to the positioning error in case of
version I while the angular error is significant in
the case of version IL

factor

3. Considering deflection angles method (Rankine),
an accumulation of error can be observed as we
move away from the starting point on the curve. It
is clear that the effect of angular error in positioning
accuracy for the first few points on curve is
significant. Bad inter- section of position lines occurs
in case of greater deflection angles at the end of the
curve. On the other hand, this method exhibits small
radial component in case of greater radii. Therefore,
it is recommended to use this method in case of flat
curves. Increasing angular precision causes a
significant improvement in the positioning accuracy
in case of long-flat curves.

4. In case of using two-theodolites method,
symmetrical and more accurate positioning is
achieved. The error ellipses are always oriented
tangential to the curve. Also adequate homogeneity
of positioning accuracy exists.

It could be noticed that, orientation of major axes
of the error ellipses does not depend on the angular
observational error but it depends only on curve
configuration (i.e. its radius and deflection angle).
Finally to sum up:

Dual theodolite method can be categorized as the
best method used for setting out circular curves
since it shows an excellent point positioning as
compared with other methods of setting out because
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of its indisputable merits over the other methods, it
is worthwhile to recommend this method when high
positioning accuracy is required. Optimum point
method, version II, is the second best
recommendation.
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POTENTIAL OF GPS FOR VERTICAL CONTROL
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ABSTRACT

The Global Positioning System (GPS) represents the most effective new technique in modern
surveying. The present work is devoted mainly to demonstrate the use and potential of GPS for
vertical control in surveying works. The main objective of the present study is to investigate the
reliability and potential of the GPS technique as compared to the classic technique for performing
the vertical control. The prospects for vertical control using GPS data should be thoroughly
investigated, for its importance in many surveying purpose. The Potential of the Global Positioning
System Data for vertical control is presented and thoroughly investigated. The Sources of errors in

GPS is introduced.

Keywords: GPS, Potential vertical control, Height determination, Height differences, Reference ellipsoid.

1. INTRODUCTION

Although an accurate method for height
determination, classical leveling is costly, time
consuming, laborious, and tedious, especially when
applied in areas with large height differences,
between points that are large distances apart,
mountainous terrain, or restricted because of the lack
of inter visibility. The advent of the Global
Positioning System (GPS) has alleviated such issue
[1] and offered a considerable solution for this
problem.

In their orbits, GPS satellites positions are
computed with respect to a reference ellipsoid, that
best approximates globally the shape of the earth in
a purely mathematical concept. This reference
ellipsoid, adopted by the GPS since January 1987, is
the world Geodetic System of 1984 which known by
(WGS84) [2].

2. PRINCIPLES

Heights, as already known by surveyors and other
users which are used within the standard engineering
operational projects or routine mapping missions, are
related to the Geoid rather than the ellipsoid. The
former being an invisible physical surface which is
difficult to the consistently located and to be
mathematically represented. However, it represents
the actual irregular shape of the earth, and defined
as the equipotential surface approximated by the

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

Mean Sea Level (M.S.L) under equilibrium with the
gravity field of the earth.

There is, therefore, a lot of sense in using the
arthometric height, the height of a point with respect
to the geoid measured along the slightly curved
plumb line normal to the geoid, as shown in Figure

() [31.

/

Figure 1. A point P shown relative to a geocentric
ellipsoid and its cartesian coordinate system (XYZ).
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The relation between the GPS - dernived ellipsoidal
height (h) and the geoid - referenced orthometric
height (H) involves the Geoid Undulation (N), the
geoid - ellipsoid separation known as the geoidal
height. It is shown in a gross exaggeration in Figure

(2).

&

Orthometric Height

1Ly

?‘?}" Topographical

\ Surface

Ellipsoidal Height kY

Ellipsoid

Figure 2. Part of that meridian of geocentric
ellipseid containing point P.

When the geoid undulation is accurately evaluated,
the orthometric height can then be easily
determined by subtracting the undulation from the
ellipsoidal height. This can be performed either by
the single point (absolute) approach, Figure (3-a) [4]:

In which the mathematical model is given by :
H=h-N (1)

or by the differential (relative) approach, Figure (3-
b), in which the mathematical model is given by:

AH=Ah-AN (2)

Obviously, the relative approach is much more
precise than the absolute approach due to the
followings:

1. As the difference in the ellipsoidal height,

measured simultaneously by the GPS data
between two points, are much more accurate than
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the absolute ellipsoidal height at either of the
terminals because of the presence of the same
systematic errors at the terminals which cancel
the difference.

2. AN is much more precise than N at either of the
terminals. The precision required for H will
depend upon the purpose for which the heights
are being used. Some tasks will only require H
for a few meters, in such the constraints on the
determinations of h and N can be relaxed. For
the highest order requirements, the precision to
which Ah can be found, limits the precision of
AH and dictates the precision requirements for
AN which need to match is precision so that the
precision of AH will not be seriously eroded [S].

For simplicity, h and H in Eq (1) and Figure (3)
are considered to be along the common vertical but
really, H is normal to the geoid while h is normal to
the ellipsoid. The angle between the normal to the
geoid and the normal to the ellipsoid is commonly
referred to as The Deflection Of The Vertical which
does not exceed 30 arc seconds in most areas and
therefore its effect can be easily ignered compared
to present uncertainties of geoid undulation
estimates.

A .
ROUND
s P TR S %ﬁﬁﬁ
! a '(H.)I

(H) | h ”'J ha e
GEQID I ///r/"
(N) (N,

(Na).

- ELLIPSOID "’F—,-_—__;‘:‘t\ o

Figure a Figure b
IFigure 3. Relationship between ellipsoidal,
orthometric, and geoidal heights for relative
heighting.

Obviously, the errors in evaluating H or AH totally
depend mainly upon the accuracy of the parameters
used in its evaluation; Viz. the ellipsoidal height and
the geoid undulation [3,4].

3. GPS - DERIVED ELLIPSOIDAL HEIGHTS

The results of many tests and operational projects
have clearly shown that GPS survey methods can
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efficiently replace classical horizontal terrestrial
survey methods comparable accuracies have also
been achieved for GPS - derived ellipsoidal height
differences. Such differences may be obtained with
uncertainties approaching (0.2 cm + 0.01 - 0.1 ppm).
These uncertainties depend on the significance of
error sources. Such errors associated with GPS data
can be minimized by adhering to appropriate
specifications and procedures [3].

4- ERROR’S EFFECT ON GPS -HEIGHTING

Various kinds of errors affect GPS -denived
ellipsoidal heights. In the last few years, research
works have been directed towards evaluating and
modeling of such errors. Next, errors affecting
GPS-Heighting are introduced in some detail
together with different studies in this concern.

4-1 Effect of the
Configuration

Geometry of the Satellite

Santerre (1989), conducted an investigation of the
impact of GPS Satellite sky distribution on the
propagation of errors in accurate relative positioning,
by studying the behavior of covariance matrix, the
confidence ellipsoid, and correlation coefficients in
a least squares solution as function of satellite sky
distribution,  station coordinates, clock and
tropospheric zenith delay. It was found that even if
the system 1is fully operational, unmodelled errors
will still significantly affect the final solution [7].

4-2 Effect of the Orbital Errors

The error in Satellites orbit may be defined by its
three components :

- Along-track, the direction of motion.
- Radial, the direction from satellite to earth, and
- Across-track (perpendicular to the other two).

Beutler et al (1989) found out that the along track
component has the greatest impact among others in
height determination. In the particular case of a
single satellite passing through the zenith of a
ground station, it was found that an along track error
of 1" in the plane of the observer as viewed from the
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ground station will result in a rotation of a network
by 1" about an axis perpendicular to the orbit plane
affecting the height component. It was also found
that the error is maximum when the direction of the
baseline is the same as the direction of the orbit
plane [5,6].

The height error may be expressed as [6]:

ey = cos (4 - A7) -Ap—s b 3)

where:

e, ,: the magnitude of the height error

A, : the azimuth of the orbital plane of the satellite

&

Ala: the azimuth of the baseline

A s: the along - track error
b: the baseline length
p: range of the satellite

Table 1. shows the effect of orbital uncertainty on
the baseline height differences.

Table 1. Effect of Orbit Uncertainties on baseline
height difference.

" As rho Height Error "
20 m |20 000 km 1 ppm
40 m |20 000 km 2 ppm
4.3 Effect of Troposphere

The Troposphere is generally the major source of
error in height determination. Beutler et al (1987 b)
reported that an error of Imm in the zenith distance
of the relative tropospheric refraction will cause a
height error of approximately 2.9 mm [6].

Two methods have been suggested by Grant
(1987) to minimize error in the heights due to a
deferential residual error in the tropospheric
correction between two stations. The first is to
model such error at each station as a time invanant
error in the solution.

The success of this method will depend on how
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stable the troposphere was during the observing
session. The second method is to model the residual
error’ at each station and at each epoch using a
Kalman filter. The success of this method will
depend on how well the dynamic model reflects the
changing troposphere [5].

In addition, kouba (1987) has adapted experience
with VLBI measurements to introduce a model that
express the effect of wet troposphere on baseline
height differences as [6]:

5
- @ 4)
Oy = S2 1 exp

where,

g, ,: the error in height difference in ppm.
constant, taken as 80 mm.

baseline length

the correlation distance usually taken as 30
km.

The effect is shown in Figure (4).

egw

4.4 Effect of Ionosphere

The effect of the ionospheric delay reaches its
maximum when the satellite is near the horizon and
is a minimum when the satellite is at the zenith.
Depending upon the separation of the two receivers
and the stability of the ionosphere, double
differecing phase measurements between station
sites will tend to cancel most of the ionospheric
delay. As the ionospheric delay is frequency
dependent, measurements made simultaneously on
both L1 and L2 frequencies will eliminate most or
almost all of the ionospheric correction. However a
residual error in the relative ionospheric delay
between two stations will be reflected as an error in
the GPS height difference. This would tend to occur

over long baseline, particularly those oriented north
- south [5,6,7].

4.5 Effect of Antenna

The antenna phase center may also be dependent
on the vertical angle to a satellite and this will affect
the height determination. Mitchell et al (1990),
stated that the whole error can only be better
antenna design. Accurately measuring the height of
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the antenna phase center before and after data
collection will probably reduce this effect [5,9].
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Figure 4. The effect of modeling errors of wet
tropospheric refraction on height difference.

4.6 Effect of Multipath and Imaging:

Multipath and Imaging, also has an effect that
depends on the antenna design and the location of
the reflecting surface in the vicinity of the receiver,
which is variable from site to another. Therefore, it
1s not possible to determine the magnitude of such
effect. Mulupath effects are site and antenna
independent and therefore will not cancel out when
double differenced between receivers. However,
Tranquilla (1988) has found that, due to its cyclic
nature, if observation periods are kept longer, it will
tend to randomize. On the other hand, Mitchell et al
(1990) stated that its effects can be reduced by the
use. of a well designed antenna which minimizes
interference and possibly incorporating an absorbent
ground plane to cut out signal reflection [5,6].

4.7 Effect of Timing

The satellite and receiver clock errors for
differential positioning have three components:

- an epoch offset from the Universal Coordinated
Time (UTC)

- an epoch difference between the two receivers

- atime rate difference between the two receivers
and the satellites.
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An epoch offset from the UTC, common to both
receivers, will result in the satellite ephemerides
being interpolated for incorrect time. King et al
(1985) stated that, the receiver clocks need to be
synchronized to UTC within 7 milliseconds for a
base line error below 1 ppm. If the two receiver
quartz clocks are synchronized to each other within
3 microseconds, that error reduced below 1 cm. The
satellite and receiver clock errors are eliminated by
differencing in the solution for baseline components

[5].
5- THE GPS HEIGHTING STUDY GROUP:

Bar charts of the most important errors affecting
baseline height differences derived by GPS is shown
in Figure (5) for two baseline of length 5 and 50
kilometers. The tropospheric contribution (ay,,) 1s
estimated using Eq. (4) The value 2ppm for
ionospheric delay (o, ) is estimated using CERN

n 10NoO
networks reported in Santerre (1989).

50 kilorneter baseline
3 ‘\\
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Figure 5. The estimated magnitude of errors (in
parts per million) of height differences.
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The satellite ephemeris is assumed to have an
along track error of 20 m and the effect on height
(0,p) 1s estimated using the Eq. (3). The effect of
(0gorg) 18 estimated from a computer simulation
carried out by Holloway (1988).

Receiver noise and any residual errors (0, 18
estimated as 5 mm irrespective of baseline length.
The total uncertainty of each baseline height (oan)

is then calculated from [6].

°2Ah = oztrop + Gzion * ozorp + ozcard * oznoi.t(s)

In Dec. 1990, another simulation has been
conducted by the GPS Heighting Study Group. The
simulations performed in this study were carried out,
again, on two baseline, 5 and 50 km. long, using the
full 18 satellite constellation for an assumed network.

Figure (6) shows that when the ambiguities are not
resolved, the dominant height error is the
tropospheric error and is proportionally much the
same for both baseline. The receiver noise error 1s
constant and therefore has a much greater influence
on the shorter line. The other errors are
proportionally very similar to each other. Figure (7)
shows that by resolving the ambiguities correctly the
error in easting coordinates is improved dramatically.
The total receiver noise error has also been
improved. The dominant error for the height
component is still the residual tropospheric error
with the error in the ionosphere and the fixed
station coordinates also being significant.

It is also apparent that the total height error is not
improved whether it was possible for the ambiguities
to be resolved or not, ever though the error in the
easting and northing components are improved [5].

6- EXPERIENCED PRECISION OF
GPS-HEIGHTING

Estimates of precision of GPS-derived ellipsoidal
height differences have been obtained by many
researchers. These estimations are usually quoted as
errors in height over baseline length in parts per
million -A selection is shown in.
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Figure 7. Simulated error in 5 km baseline,
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Table 2.

Author
Engelis and Rapp, 1584

Precision

about 1.6 ppm

3 ppm Schwarz and Sederis, 1985
2to 3 ppm Schwarz et al, 1987
to 3.2 ppm Holloway, 1988

+ (0.5 cm + 1 to 2 ppm)| Zilkoski and Hothem, 1988

1 to 3 ppm Kearsley, 1988b
to 3.5 ppm Leal, 1989
1to 2.5 ppm Kleusberg, 1990

1 ppm Abou-Beih, 1993

7.1 Geopotential Models

The global geoid can be represented by means of
geopotential models, 1.e. mathematical models in the
form of spherical harmonics. The coefficients of the
various terms in the series are derermined using a
combination of satellite orbit analysis, terrestnal
gravity and N measured by satellite alumetry over

the ocean. The geopotential model for N is
expressed as [5,6]:
KMu-Z n
N=—o- P_ (cos6)
GR E ,§ o @)
(C*nmcosmA +S*nmsinmA)
Where :
R: is the radius of the spherical model
of the earth.
G: is the mean gravity of the earth.
KM: is the geocentric  gravitational
constant times the earth mass.
o,\: are polar distance, longitude.

C’n,m, S n,m: are fully normalized  potential
coefficients.

Pn,m (cos 6): are legendre polynomials.

n,m: are degree, order of the spherical

harmonic term.

7.2. Astrogeodetic Levelling

Astro-geodetic levelling results are normally related
to a local ellipsoid.
Therefore, to transform GPS derived (h) into
orthometric height (H), the separation between the
geoid and a geocentric ellipsoid datum is needed.
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Even though they are useful in establishing the
transformation parameters between a local earth
model and the World Geodetic Datum ( WGS84 ),
values of N evaluated from Astro-Geodesy are of
limited use for transforming GPS heights into
orthometric heights. Schwarz et al ( 1987 ) stated
that the astrogeodetic data base is not dense enough,
and the costs to upgrade it would be prohibitive and
only gravimetric methods will therefore be the major
method among others in evaluating the geoid-
ellipsoid separation. Furthermore, Mitchell et al
(1990) stated that the accuracy obtained from such
method is not satisfactory promising as very few
Laplace observations are made today, and the
number must be expected to decrease since GPS is
becoming much more popular [5,8].

8. PROPOSED TECHNIQUE

In recent years, the term Gravimetric methods has
been expanded to include like least squares
collection, mentioned above, which
measurements other than gravity anomalies Schwarz
et al ( 1987 ) used certain data types for the
determination of N ; namely a geopotential model,
point or mean gravity anomalies, and a detailed
digital elevation model, and introduced a solution
that can be written as :

N = Ngpm + Npg + Ny, 9
where :
Ngv:  is the contribution of the geopotenual
model.
Nag is the contribution of the gravity anomalies.
Ny is the contribution of the ellipsoidal

heights.
Similarly, geoid height differences can be written as:
AN = ANGM + ANAg + ANh (10)

Figure (8) shows the different contributions for a
typical geoid of 100 km length in mountainous
terrain. H must be noted that Ngp changes very
smoothly over a distance of 100 km while NAg
represents regional and local geoid features, and Ny,
which changes rapidly specifically in mountainous
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can use .

terrain and usually has small amplitudes, represents
wavelength features below 20 km that are caused by
the topography [8].

Figure (9). shows the error, in ppm for each of the
three components. The total error in is clearly
governed by the ey and the other two components
are rather smaller in comparison. Finally the
gravimetric determination of can be done with an
accuracy of about 3ppm for distances between 10
and 100 km which makes it compatible with the
current accuracy of GPS-derived Ah [8].

9. CONCLUSION

The Potential of the Global Position System Data
for vertical control is presented and thoroughly
investigated. The sources of errors in GPS is
introduced.

It is concluded that orthometric height differences
can be determined, from the geoid - ellipsoid
separation and the GPS - derived ellipsoidal heights
using either of the following approaches:

i)  Simply ignoring the geoid ellipsoid separation

will give errors which may be up to 50 ppm.

ii) Using geoid maps, including those representing
astrogeodetic results.

iii) Using geopotential models, which is
inexpensive and suited to an accuracy of about
5 ppm.

iv) Using gravimetric determinations,assumed to
exclude geopotential ~models alone but to
include all combination methods covered earlier,
would lead to high accuracy of about Zppm.

v) By the geometric methods, i.e. interpolation,
possibly with surface fitting, between other
points at which GPS observations have been
made -and possibly in combination with
methods referred to in (iii), may give an
accuracy of up to 4ppm, or better over shorter
distances.

vi) By a combinations of methods, most
particularly, those at (iv) and (v) to achieve
much better accuracy.

On the other hand, Zilkoski and Hothem (1989)
recommended the following strategies when
levelling networks are used in conjunction with GPS
networks in orthometric height determination [2,9]:

All leveling data used to establish the heights

C 339



EL NAGHI and MOUSTAFA: Potential of GPS for Vertical Control

should be corrected for known systematic errors.

In addition, Dodson, A. H. and Gerrard, S.M.E.
(1990) investigated leveling with GPS on test
networks throughout England and Wales and
concluded that the GPS- derived orthometric height
differences can achieve accuracies as good as those
produced by tertiary leveling over short distances
and expected that equal accuracies can be
maintained over longer baseline when taking a good
care in processing the field data derived from the
GPS. They suggested that, unlike traditional
levelling, GPS heighting accuracy is less dependent
upon distance. However, they suggested using the
leveling at short distances, i.e. less than 1 km.
Finally the results of many experiences with the
GPS, indicate to a great extend the promising
reliability and accuracy of this new technique for
establishing a precise base for vertcal control
operation. Consequently, it can be safely
recommeded to use the GPS as a reliable and
accurate technique for vertical control, taking into
consideration the effect of the arising errors in this
techniques.
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