PARAMETRIC APPROACH FOR THE ESTIMATION OF BRIDGE PIER NONALIGNMENT EFFECT ON MAXIMUM EQUILIBRIUM SCOUR DEPTH

Essam. A. Mostafa, A.A. Yassin

Irrigation and Hydraulics Dept. University of Alex., Alex. Egypt. R. Ettema

Iowa Institute of Hydraulic Research (IHR)
The University of Iowa, Iowa City,
Iowa, USA.

and B.W. Melville

Civil Engineering, Dept., Auckland University, Auckland, New Zealand.

ABSTRACT

It is always emphasized the importance of an accurate determination of the nonalignment effect, the angle of attack factor, K_{α} , on maximum equilibrium scour depth, d_s , at skewed bridge piers. Presented herein is a comprehensive experimental investigation showing the nonalignment effect on d_s at bridge piers of rectangular and oblong shapes skewed at different angles of attack. Wide range of data was obtained from the experiments conducted at both the University of Alexandria (UA) and the University of Iowa (UI). Clear water scour was measured considering relatively shallow and deep flow depths as well as uniform and nonuniform bed sediment. A total of 100 individual experimental runs were conducted. A stepwise multiple nonlinear regression analysis was done to show that K_{\alpha} is dependent not only on the aspect ratio, L/b, and the angle of attack, a, as presented by Laursen and Toch (1956) but also on other parameters including the effect of pier shape, flow depth ratio, y₀,/B and sediment size ratio, B/d₅₀. Contrary to the finding of Melville and Sutherland (1988), the flow depth ratio and the sediment size ratio were found to be related to B, the projected width of the skewed pier, instead of b, the original width. Values of K_{α} presented herein and those estimated from the curves of Laursen and Toch (1956) were compared with the experimental data of K_{α} emphasizing the inconsistency of using these curves in design purposes. Values of K_{\alpha} suggested by Laursen and Toch (1956) and those proposed by the present study were used to estimate d_s by applying the method of Melville and Sutherland (1988). The accuracy of d_s estimated in both was checked against the corresponding measured values. It is shown that the method of Melville and Sutherland (1988) gives more accurate results of d_s when values of K_{α} proposed by the present study are used.

Keywords: Parametric approach, Nonalignment effect, Equilrium scour depth, Multiple nonlinear regression.

NOTATION

- U mean approach flow velocity

 U_c mean approach flow velocity at threshold condition
- U* shear velocity
- U*c critical shear velocity defined by Shields function
- τ shear stress of approach flow
- τ_c critical shear stress
- yo flow depth

- g gravitational acceleration
- b diameter of circular pier or width of noncircular pier when it is aligned to the flow direction
- B projected width of pier skewed to the flow direction
- α angle of attack or the angle between the main flow direction and the longitudinal axis of noncircular pier

L .	length of pier
H .	height of pier
W	flume width
d_s	maximum equilibrium scour depth
d_{50}	mean diameter of bed sediment
d ₉₀	particle size for which 90% are finer by
-90	weight
d ₈₄	particle size for which 84% are finer by
	weight
d ₁₆	particle size for which 16% are finer by
	weight
$\sigma_{ m g}$	geometric standard deviation of bed
0	sediment = d_{84}/d_{50}
K _s	shape factor
K_{α}	angle of attack factor
Ki	flow intensity factor
K_{y}	flow depth adjustment factor
K _d	sediment size adjustment factor
K_{σ}	sediment gradation adjustment factor
Q	flow discharge
st dErr	asymptotic standard deviation of the
prijeda w	parameter
CV%	coefficient of variation = (st dErr *
7	100%)/mean
Dependency	(1 - (variance of the parameter other

Dependency (1 - (variance of the parameter, other parameters held constant)/(variance of the parameter allowing others to change in the usual way))

INTRODUCTION

The angle of attack factor, K_{α} , is defined as the ratio between the maximum equilibrium scour depth, d_s , occurred at the bridge pier skewed at certain angle, α , to that occurred at the same pier when it is aligned to the flow direction. It is well known that K_{α} presented by the curves of Laursen and Toch (1956), as shown in Figure (1), is expressed in terms of the aspect ratio, L/b, and the angle of attack, α , where L is the length of noncircular pier and b is the pier width when it is aligned to the flow direction. For example, the curves show that the rectangular pier of aspect ratio, L/b =10, and skewed at $\alpha = 30^{\circ}$, has $K_{\alpha} = 3.0$. This means that the maximum equilibrium scour depth, d_s , occurred at $\alpha = 30^{\circ}$ equals three times d_s at $\alpha =$

0°. However, at $\alpha = 90^\circ$, $K_{\alpha} = 5.0$ which means that d_s at $\alpha = 90^\circ$ equals five times d_s at $\alpha = 0$.

Melville and Sutherland (1988) suggested that the maximum equilibrium scour depth, d_s, at a noncircular pier aligned to the flow direction is given by $d_s = (2.4)(K_s)(b)$ where K_s is the shape factor, provided that the flow depth is deep enough so that $y_a/b \ge 2.6$ and the sediment size is fine enough so that $b/d_{50} \ge 25$. Under these conditions and at α =90°, the width of the pier of which L/b =10 equals ten times its original width, b. So according to Melville and Sutherland (1988), d_s at $\alpha = 90^{\circ}$ equals ten times d_s at $\alpha = 0^\circ$. Considering the same pier, when the designer compares between values of d_s obtained by using the curves of Laursen and Toch (1956), $d_s = 5$ b, and by applying the method of Melville and Sutherland (1988), $d_s = 10$ b, he detects a clear contradiction. Thereby, emphasizing the inconsistency of using the curves of Laursen and Toch (1956) and the doubt they may be dependent of other influences including the effect of flow depth and sediment size. Therefore, the skewness effect needs further investigation.

A clear as well as a close view of this effect should be confidently presented to the designer who is currently using the curves of Laursen and Toch (1956). It is well known that b, the pier original width, is the main factor affecting d_s at $\alpha = 0^\circ$. However, once the pier is skewed to the flow direction, the projected width, B, as shown in Figure (2), should be considered instead. In this case, the effect of B/d₅₀ and y_o/B on K_α should be examined. As the angle of attack, α , increases, B increases and so does B/d₅₀. On the other hand, as B increases y₀/B decreases. So, at certain angle, it is easy to have $B/d_{50} \ge 25$ so that B/d_{50} does not affect d_s . Contrarily, similar condition, $y_0/B \ge 2.6$, is not so easy to be obtained. This implies that the effect of y₀/B is more significant than B/d₅₀.

Generally, the relationship of the angle of attack factor, K_{α} , may take the following functional relationship form:

$$K_{\alpha} = f \left(L/b, \alpha, \text{ shape, } y_o/B, B/d_{50}, \sigma_g \right)$$
 (1)

A comprehensive experimental investigation is needed in order to formulate Eq. (1) for design purposes.

Figure 1. Curves of Laursen and Toch (1956).

Figure 2. Skewed rectangular and ablong pier shapes in plan.

EXPERIMENTAL INVESTIGATION

Experiments were conducted at the University of Alexandria (UA) in Egypt and the University of Iowa (UI) in USA. They were conducted under clear water scour with the bed surface of sediment near the condition of incipient particle motion (i.e. the condition at which maximum equilibrium scour

depth occurs). Data and results are documented by the Ph.D thesis of Mostafa (1994). The experiments at UI were conducted in a 25 m long, 1.5 m wide and 0.6 m deep flume, as shown in Figure (3). The flume used at UA was 12 m long, 0.86 m wide and 0.6 m deep. Each flume was equipped with a sand recess. A uniform sand (medium size, $d_{50} = 0.9$ mm and geometric standard deviation of bed sediment,

 $\sigma_g = d_{84}/d_{50} = 1.1$) was used for the UI experiments, however, a nonuniform sand ($d_{50} = 0.6$ mm, $\sigma_g = 2.4$) was used for the UA data. Two pier shapes, oblong and rectangular, with aspect ratios, L/b = 4, 6, 8, 10 and 12, were investigated. For all experiments the pier width was set constant at b = 3.5 cm while the flow depth was held constant at either 10.5 cm (UA) or 35 cm (UI). For each pier, the skewness was varied in 15° steps from 0° to 90°. A total of 100 individual experimental runs were conducted, each one running for several hours in case of nonuniform sand at UA and for several days in case of uniform sand at UI until equilibrium scour was practically attained.

Experimental Procedure

The procedure adopted for the experiments which were carried out under the same conditions of approach-flow, bed-sediment, and bed slope are summarized as following: 1- fixing a mounting seat to the flume bottom, 2- fixing a pier of certain shape and aspect ratio to the seat, 3- filling the recess with sand, 4- leveling bed sediment surface, 5- closing the tail gate and adjusting the pump valve to produce a very small discharge to fill the flume with a depth of about 5.0 cm, 6- closing the valve, 7- keeping still water in the flume for a period to allow filling sediment voids and to ensure a full saturated sand, 8- opening the pump valve and the tail gate gradually until filling the flume predetermined steady uniform flow depth of 10.5 cm at UA and 35.0 cm at UI, 9- keeping the valve and the tail gate opened, 10- allowing water to recirculate until reaching the equilibrium stage for the scour hole.

At UA, it was observed that after few hours, an armour layer formed in the bottom of the scour hole. Thereafter no more scour occurred. At this stage, the pump control valve was gradually closed and the water in the flume was slowly drained. It was observed that 6 hours was a sufficient time for equilibrium scour around piers which were aligned to the flow direction. On the other hand, in case of skewed piers which presented a wider face to the flow, it was found that 8 to 10 hours (depending on the angle of attack) was enough time. When the scour hole was drained, the scour depths were measured. The sand around the pier was then

removed, and either pier orientation was adjusted, or a pier of different aspect ratio was mounted. Steps were repeated for both shapes, rectangular and oblong, at different angles ($\alpha = 0, 15, 30, 45, 60, 75, 90^{\circ}$) and for aspect ratios, L/b = 4, 6. For piers of aspect ratios L/b = 8, 10, 12 only three angles (α =0, 15, 30°) were studied.

Essentially the same procedure adopted at UA were done at UI. However, because the sand used at UI was uniform and armoring did not occur and, consequently, did not reduce maximum equilibrium scour depth, d_s , each run took several days to reach the equilibrium condition. Piers of aspect ratios, L/b = 4, 6, 8 were used and skewed at angles, α = 0, 15, 30, 45, 60, 75, 90°. A total of hundred experimental runs were conducted at both UA and UI.

PARAMETRIC APPROACH FOR THE ESTIMATION OF K_{α}

The aim of this approach is to relate the dependent parameter, K_{α} , to the independent parameters on the right hand side of Eq. (1).

Comprehensive Angle Of Attack Factor, Ka

An accounting of all the parameters affecting K_{α} , leads to the following relationship for rectangular or oblong piers:

$$K_{\alpha} = a(\text{Log(B/b)})^b (y_o/b)^c (b/d_{50})^d (\sigma_g)^c + 1$$
 (2)

The form of Eq.(2) was chosen to satisfy the boundary condition; at $\alpha = 0^{\circ}$, B/b = 1 and $K_{\alpha} = 1.0$, where B is the projected width of the skewed pier, as shown in Figure (2). Mostafa et al (1995-I) gave a geometrical definition to B/b. For rectangular piers they proposed

B/b =(L/b)
$$\sin \alpha + \cos \alpha$$
 (3)

and for oblong piers, they suggested

$$B/b = (L/b - 1) \sin \alpha + 1 \tag{4}$$

Values of the five coefficients, a, b, c, d and e, can be estimated separately for rectangular or oblong piers by conducting a regression analysis.

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995

Because y_0/b does not change as α changes, it may be advantageous to use y_0/B instead of y_0/b . Similarly, it might be better to use B/d_{50} instead of b/d_{50} . Actually, using B instead of b is logical once the pier is skewed to the flow direction. In this case, Eq. (2) may be changed to the following form:

$$K_{\alpha} = a(\text{Log(B/b)})^b (y_0/B)^c (B/d_{50})^d (\sigma_g)^c + 1$$
 (5)

Multiple nonlinear regression analysis was done to estimate the five coefficients. The data used in the analysis are presented in Table (1) as a sample for rectangular piers. Similar data for oblong piers are documented by the Ph.D thesis of Mostafa (1994). In Table (1), $(K_{\alpha}-1)$ is defined as the dummy term Y, while, the parameters, Log(B/b), (y₀/B), (B/d₅₀) and (σ_g) are defined as X_1 , X_2 , X_3 and X_4 , respectively. The degree of correlation of a dependent variable, Y, with many independent variables, X_1 , X_2 , X_3 and X_4 , in a multiple regression analysis is measured by the asymptotic standard deviation of the parameter, st dErr, and (CV%) which is defined as a coefficient of variation = ((st dErr)*100%)/mean. When the number dimensionless independent variables are many, the effective variables of them should be selected in a step-wise procedure by applying a criterion for the addition or deletion of a variable. In the regression, a coefficient called Dependency (1- (variance of the parameter, other parameters held constant)/(variance of the parameter allowing others to change in the usual way)) is used to select the effective independent variables. The strong dependency (i.e., its value is close to 1.0) suggests that the present model is overparameterized or too complex for the data and that a model with fewer parameters would be better.

During the regression, when the number of parameters exceeds the first one, Log(B/b), on the right hand of Eq. (5), the system of equations used, was in some cases unstable for determining the five coefficients and random errors occur leading to different solutions. The result given in Table (2) as a sample for rectangular piers shows that when the parameters are two or more, the dependency value is very close to one, however, it is between 0.7 to 0.8 when only the first parameter is used. Similar data for oblong piers are documented by the Ph.D thesis

of Mostafa (1994). This implies that B/b or in other words L/b and a, mainly affect K_{α} .

It was found that yo/B affects ds around a skewed pier. For example, the scour depths around a skewed rectangular pier in uniform sand as shown in row (2) in Table (2), can be affected by yo/B where values of Dependency were 0.738, 0.769 and 0.711. When the data of scour depths in nonuniform sand were analyzed, the ratio (y₀/B) did not affect the scour depths as shown in row (8) in the same table where the corresponding values of Dependency are 0.997, 0.995 and 0.985. This is likely because the range, 3 \geq y₀/B \geq 0.4, used for the UA experiments was relatively shallow (i.e., limited range). However, when the data for both uniform and nonuniform sand were together analyzed, the ratio of y_o/B remains affecting the scour depths as shown in row (12) in Table (2). The results at both UA and UI show that y₀/B affects not only d_s but also the flow field and consequently affects the location of maximum equilibrium scour depth.

Summarizing the parametric approach, as given in Table (2), the following equations can be used to estimate the angle of attack factor, K_{α} , for skewed rectangular piers:

$$K_{\alpha} = 1 + 3.374 (\log (B/b))^{1.736}$$
 (6)

or for better accuracy (less Dependency):

$$K_{\alpha} = 1 + 3.393 (\log(B/b))^{1.76} (y_o/B)^{0.05}$$
 (7)

For skewed oblong piers, the following equations can be used

$$K_{\alpha} = 1 + 4.54 (\log (B/b))^{1.56}$$
 (8)

or for better accuracy (less Dependency):

$$K_{\alpha} = 1 + 4.51 (\log(B/b))^{1.523} (y_o/B)^{-0.054}$$
 (9)

The negative value of c in Eq. (9) may be due to the narrow range of y_o/B which used for oblong piers if compared with that range used for rectangular piers. It is shown that σ_g did not affect K_α . The reason is that the effect of σ_g on d_s at $\alpha = 0$ and at certain angle is almost the same.

5

00

.63

ω

.036

0

482

0.09

1100

0

0.828

Table (1) Values of the independent parameters, x1, x2, x3 and x4 as well as the dependent one,Y,for the rectangular piers (UI and UA data) 60 60 90 75 30 5 90 45 75 0 0 75 5 0 sin a 0 0 0 .866 0 259 .966 .259 .966 259 .966 .866 .707 .707 0 0 S S S W W cm www w W ω W W W W W W W W O G G S G 01 01 ज ज ज S ज ज ज OT O OI 010101 S O U 5 4 4 4 4 4 4 4 ∞ 0 0 σ ത 0 400 4 4 4 4 4 8.816 13.87 10.03 10.03 13.53 3 W 2 .004 14.43 W ω .004 4 8 .32 4 .87 .37 .43 .94 S .19 CT S N N N 4.123 O S W 4 ω ω 4 B/b .964 054 696 866 519 123 964 .536 866 001 866 8 4 0 .95 4 log(B/b) 0.615 0.615 0.602 0.598 0.548 0 0 0 0 0 0 0 0 0 401 457 695 .587 602 598 .548 457 .301 .301 782 756 0 0 0 0 10.5 0 10.5 10.5 10.5 10.5 Yo Cm 35 35 35 35 35 3 3 3 3 3 3 0.728 2.426 2.828 0 yo/B S 4 0.75 2.5 WX 652 0 489 .997 .757 499 .587 10 756 .97 0 02 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0 0 0 d50 0 0 0 .09 .09 .09 .09 09 97.95 38.89 155.6 160.3 154.2 111.5 38.89 155.6 160.3 154.2 137.5 111.5 38.89 221.5 150.3 137 77.82 77.82 ၽွ 192 .89 w S Ġ 4 __ __ _ __ __ __ __ __ __ __ __ __ 21.2 21.2 21.5 00 13 25 5 2 26.8 30 9.5 22 ds 9 9 27 25 17 O ____ w w S N 4 4 N 4 Ċ œ 1.511 2.011 1.871 2.842 1.802 2.632 1.798 2 ds/B .911 2 .514 .614 .714 .695 .963 .469 .525 .567 747 .714 438 .55 466 1.789 N 2.28 .656 W W 674 621 .816 .342 .447 183 232 28 ON 1.011 0 0 0 0 .447 .656 .674 621 .816 .632 342 .789 312 183 232 842 .28 0 28 0 0 ON

Table (2) Values of the coefficients and their dependencies according to the form of Eq. (5) (UA and UI data of rectangular piers)

o tn	e form of	Eq. (5) (UA a	nd UI da	ta of recta	angular p	iers)	
			Coeffi-		01.45	01/0/	Danandanau
No.	Conditions	Equation	cients	Values	St dErr	CV %	Dependency
1		h h	а	3.436	0.0143	4.17	0.703358
		$Y = aX_1^b$	b	1.777	0.015	6.47	0.703358
2		h. c	а	3.31	0.133	4.02	0.738
		$Y = aX_1^b X_2^c$	b	1.89	0.117	6.23	0.769
			С	0.1618	0.065	40.34	0.711
3	rectangular &	h. b. d	а	10.8	33	306	0.999
	uniform	$Y = aX_1^D X_3^d$	b	2.08	0.922	44.3	0.995
	sediment		d	-0.197	0.586	298	0.999
4			а	42.3	120	280	0.999
		$AX_1^b X_2^c X_3^d$	b	2.56	32	32	0.995
		$aX_1^DX_2^CX_3^D$	С	0.158	40	40	0.707
			d	-0.43	120	120	0.999
5			а	30.11	89	290	0.999
		$AX_1^b X_2^c X_3^d$	b	2.47	0.83	33	0.995
			С	0.158	0.063	40	0.708
		(repeat)	d	-0.377	0.53	140	0.999
6			а	0.03	89.89	298.6	0.999
		Y =	b	2.467	0.8335	0.033	0.995
		aX ₁ bX ₂ cX ₃ d	С	1.582	0.0638	0.04	0.7082
		(repeat)	d	-3.767	0.536	0.014	0.999
7			а	3.22	0.354	10.9	0.824
		$Y = aX_1^b$	b	1.633	0.268	16.4	0.824
8			а	0.4356	0.02	0.001	0.997
		$Y = aX_1^b X_2^c$	b	-1.139	0.008	0.003	0.995
			С	-5.5256	0.01	0.002	0.985
9	rectangular &	$Y = aX_1^bX_3^d$	а	0.264	2.15	815	0.999
- 1	nonuniform		b	1.05	2.14	204	0.999
	sediment		d	0.401	1.48	370	0.999
10			а	0.196	91.7	4660	1.0
1		Y =	b	4.125	2.82	68.3	0.998
1		$AX_1^b X_2^c X_3^d$	С	2.57	90.7	3500	0.999
		474 77 73	d	0.887	90.8	10200	1.0
11		A CONTRACTOR AND ADDRESS OF THE PARTY OF THE	а	3.374	0.1563	4.63	0.753
		$Y = aX_1b$	b	1.736	0.1214	6.99	0.753
12			а	3.393	0.156	4.6	0.752
		$Y = aX_1^b$ $Y = aX_1^bX_2^c$	b	1:76	0.122	6.92	0.758
		1 -4/1 //2	С	0.05	0.041	81.5	0.052
13	rectangular &		a	5.075	3.55	72.0	0.998
	uniform &	$Y = aX_1bX_2d$	b	1.83	0.207	11.3	0.914
1	nonuniform	1 - 4/1 /3	d	-0.0685	0.12	177.0	0.9988
	sediment		ŭ.	0.0000	0.12	177.0	0.0000
14			а	0.03	14.7	47500	1.0
		Y =	b	4.22	2.88	68.4	0.998
		ax by cy d	c	3.0	90.7	3019	0.999
		$aX_1^bX_2^cX_3^d$	d	1.26	90.8	7200	1.0
15			a	0.52	1.57	303	0.999
		Y =	b	1.42	0.9	64	0.995
		$aX_1bX_2cX_3d_{X_4}$	C	0.173	0.094	54	0.817
		an1 n2 n3 x4	d	0.313	0.59	190	0.999
		7	e				
			е	0.54	0.32	590	0.983

COMPARATIVE ANALYSIS

A comparative analysis is carried out to compare the accuracy of estimating K_{α} by using either the parametric approach or the curves of Laursen and Toch (1956). Statistically, the more accurate method must have a smaller standard error of estimate, S_{e} , which is given by the following equation:

$$S_{e} = \sum \left[\frac{\{d_{s}(measured) - d_{s}(estimated)\}^{2}}{n-2} \right]^{0.5}$$
 (10)

where n is the number of experimental runs. Additionally, an average absolute percentage error, A_e is calculated by using the following equation:

$$A_{e} = \sum \left[\left| \left\{ \frac{d_{s}(measured) - d_{s}(estimated)}{d_{s}(measured)} \right\} \right| *100\% \right] / n \quad (11)$$

Table (3) shows values of S_e and A_e for the angle of attack factor, K_α . These results also show that the curves of Laursen and Toch (1956) give greater values of S_e and A_e than those given by Eq. (6) or Eq. (7) of the parametric approach for rectangular piers. The difference increases for the oblong piers. So, estimating K_α by using Eq. (7) for rectangular and Eq. (8) for oblong piers is more accurate than using the curves of Laursen and Toch (1956).

Table (4) shows values of S_e and A_e for the maximum equilibrium scour depth, d_s estimated by applying the method of Melville and Sutherland (1988). The method was presented in details by Mostafa et al. (1995-I). They proposed K_s = 1.25 for rectangular and K_s = 0.9 for oblong piers. It can be seen from these results that the method of Melville and Sutherland (1988) is more accurate when K_α is estimated by using Eq. (7) and Eq. (8) of the parametric approach than it is when K_α is estimated from the curves of Laursen and Toch (1956).

Data of K_{α} , collected from the previous studies and obtained around oblong piers, were compared with those estimated by using Eq. (8). As shown in Figure (4), it is shown that the limited data of Schnieble (1951), Maza (1964), Chabert and Engeldenger (1956), Zarzeliot (1960) and Hanna (1978) all are under the line of perfect agreement (i.e., underpredict K_{α}) except only one point. Some of the collected data are in details so that d_s can be estimated. Data of Chabert and Engeldenger (1956)

are given in Table (5) and those of Varzeliotis (1960) are given in Table (6). The regression analysis yields a high dependencies as shown in row 5 and 6 of Table (7) which means a bad correlation. The resulted coefficients, a and b, are not compatible with those obtained when the present experimental data were used. When the method of Melville and Sutherland (1988) was used to estimate d_s, the data of Chabert and Engeldenger (1956) and Varzeliotis (1960) underpredict d_s as shown in Figure (5). This disagreement might be due to the following:

- use of coarse sand in most of the previous studies which is responsible for decreasing the maximum scour depth.
- 2. use of shallow water depth which is also responsible for decreasing d_s at large angles more than at small angles of attack.

Table 3. Values of standard error of estimate, S_e , and average percentage error, A_e , for K_{α} .

		commend on	, 6,	Œ		
Pier shape	statistical parameters	K _α by Laursen & Toch (1956)	K_{α} by Parametric	Approach		
and the second s			Eq. (6)	Eq. (7)		
rectangular	Se	0.25	0.246	0.242		
	A _e	7.72	7.07	6.9		
			Eq. (8)	Eq. (9)		
oblong	Se	0.5	0.20	0.19		
	A _e	11.3	4.73	4.72		

Table 4. Values of standard error of estimate, S_e , and average percentage error, A_e , for d_s .

2	0 1		- 3	-				
		Applying the method of Melville & Sutherland (1988)						
Pier shape	statistical parameters	K _α by Laursen and Toch (1956)	K _α by Parameric	Approach				
			Eq. (6)	Eq. (7)				
rectan gular	Se	2.37	1.78	1.69				
	A _e	17.9	15.0	14.4				
			Eq. (8)	Eq. (9)				
oblong	Se	2.25	1.68	1.73				
7	A _e	15.17	19.33	20.4				

Table 5. Values of the independent parameters, X1, X2, X3 and X4 as well as the dependent one, Y, for the oblong pier (data of Chabert and Engeldinger (1956)).

α	sin α	b (cm)	L/b	B (cm)	B/b	log (B/b)	y _o (cm)	y _o /B	d ₅₀ (cm)	B/d ₅₀	$\sigma_{ m g}$	d _s (cm)	d _s /B	Kα	K _α -1
						X1		X2		X3	X4				Y
0	0	15	4	15	1	0	15	1	0.3	50	1.12	24.7	1.647	1.	0
15	0.259	15	4	26.65	1.776	0.25	15	0.563	0.3	88.82	1.12	27.9	1.047	1.13	0.13
30	0.5	15	4	37.5	2.5	0.398	15	0.4	0.3	125	1.12	36.8	0.981	1.49	0.49

Table 6. Values of the independent parameters, X1, X2, X3 and X4 as well as the dependent one, Y, for the oblong pier (data of Varzeliotis (1960)).

α	sin α	b	L/b	В	B/b	log	y _o	y _o /B	d ₅₀	B/d ₅	σ_{g}	d _s	d _s /B	Kα	K_{α} -1
		(cm)		(cm)		(B/b)	(cm)		(cm)	0	6	(cm)			
						X1		X2	ar the male continues to the various of the continues of	Х3	X4	MICLION AND MICROSOFT TO GREAT CAPE A THE STATE OF THE ST			Y
0	.0	2.5	6	2.5	1	0	10.7	4.28	0.17	14.71	1.15	3.5	1.4	1	0
15	0.259	2.5	6	5.735	2.294	0.361	10.7	1.866	0.17	33.74	1.15	4.8	0.837	1.371	0.371
30	0.5	2.5	6	8.75	3.5	0.544	10.7	1.223	0.17	51.47	1.15	8.3	0.949	2.371	1.371
45	0.707	2.5	6	11.34	4.536	0.657	10.7	0.944	0.17	66.7	1.15	13.2	1.164	3.771	2.771

Table 7. Values of the coefficients a, b, c and d and their dependencies (UA and UI data of skewed rectangular and oblong piers and those of Chabert and Engeldinger (1956) and Varzeliotis (1960) for oblong piers are included).

				-		01 15	01/0/	Dependency
No	Conditions	Source	Equation	Coeffi-	Values	St dErr	CV %	Dependency
				cients				0.704
1	rectang.&			а	3.22	0.162	5.03	0.784
	uniform and		$Y = aX_1^b$	b	1.785	0.119	6.64	0.784
	nonuniform							V-
	sediment							
	$\alpha \leq 60$							
2				а	3.32	0.155	4.68	0.788
			$Y = aX_1^bX_2^c$	b	1.879	0.113	6.04	0.8
	L.			С	0.1	0.037	3.66	0.113
3	oblong &	present		а	4.716	0.143	3.03	0.79
	uniform and	study	$Y = aX_1^b$	b	1.662	0.0.67	4.017	0.79
	nonuniform							
	sediment							
	$\alpha \leq 60$							
4				а	4.693	0.148	3.157	0.803
			$Y = aX_1^bX_2^c$	b	1.646	0.072	4.37	0.816
				С	-0.016	0.024	1.45	0.143
5	oblong &	Chabert &		а	12.0	0.51	4.29	0.94
	uniform	Engelding-er	$Y = aX_1^b$	b	3.5	0.087	2.48	0.94
,	sediment	(1956) &					C.	
	α ≤ 60	Varzeliotis						
	u 200	(1960)						
6				а	12.0	0.514	4.3	0.94
			$Y = aX_1^bX_2^c$	b	3.5	0.087	2.5	0.94
				С	-0.054	0.056	104.1	0.013

Figure 4. Comparison between values of K_{α} proposed by Eq. (8) of the parametric approach and those measured by other previous researchers.

Figure 5. Comparison between values of d_s measured by previous researchers and predicted by the method of Melville and Sutheriand (1988) where k_{α} is estimated by Eq. (8) of the parametric approach.

CONCLUSIONS

Based on the analysis of 100 individual experimental runs which were conducted at the University of Alexandria, UA, and the University of Iowa, UI, the following conclusions were derived for the mentioned range of experiments:

1-The angle of attack factor, k_{α} , is affected primarily by the aspect ratio, L/b, the angle of attack, a, and the shape of the pier. Whereas, the ratio of water depth to pier projected width, y_{o}/B , is shown to have a lesser effect on the magnitude of k_{α} around a skewed pier, it has an effect on the flow field around the pier and consequently on the location of d_{s} . On the other hand, regression analysis shows that both B/d_{50} and σ_{g} have neglected effect on K_{α} for the range specified in the experiments.

2-Values of k_{α} given by Eq. (7) and Eq. (8) of the parametric approach for rectangular and oblong piers, respectively, are more accurate than those given by the curves of Laursen and Toch (1956).

3-It is shown that the method of Melville and Sutherland (1988) gives more accurate results of d_s when values of K_{α} proposed by the present tudy, Eq. (7) and Eq. (8), are used.

REFERENCES

- [1] J. Chabert and P. Engeldinger, "Etude des Affouillements autour des Piles des Ponts, " Laboratoire National d' Hydraulique, Chatou, France, 1956.
- [2] Y.M. Chiew and B.W. Melville, "local Scour Around Bridge Piers", *Journal of Hydraulic Research*, vol.25, No.1, 1987.
- [3] W.S Chitale, Discussion of "Scour at Bridge Crossings," by E.M. Laursen, *Trans. A.S. C.E.*, vol. 127, pp. 191-196, 1962.
- [4] R. Ettema, "Scour at Bridge Piers," University of Auckland, School of Engineering, Report No. 216, 1980.

- [5] P. Hjorth, "Studies on the Nature of Local Scour", Department of water Resources Eng., Lund Institute of Technology, Bulletin Series, A, No. 46, 1975
- [6] E.M. Laursen and A. Toch, "Scour around Bridge Piers and Abutments," Iowa Highway Research Board, Bulletin No. 4, 60 pp., 1956.
- [7] E.M. Laursen, "Scour at Bridge Crossings," *Iowa Highway Research Board, Bulletin*, No. 8, 1958.
- [8] E.M. Laursen, "Scour at Bridge Crossings," *Trans. A.S. C.E.*, vol. 127, pp. 166-179, 1962.
- [9] B.W. Melville and A.J. Sutherland, "Design Method for, Local Scour at Piers, " *Journal of the Hydraulics Division, ASCE*, vol. 114, No. 10, October 1988.
- [10] E.A. Mostafa, "Scour Around Skewed bridge Piers" Ph.D thesis, Irrigation and Hydraulics Department, Faculty of Engineering, Alexandria University, 1994.
- [11] Mostafa et al. "Local Scour At Skewed Bridge Piers," National Conference, On Hydraulic Engineering And International Symposium On Engineering Hydrology, Sponsored By American Society Of Civil Engineers, July 25-30, 1993, San Francisco, California, USA.
- [12] Mostafa et al. (1995-I) "Systematic Investigation of Skewness Effect on Maximum Equilibrium Scour Depth at Skewed Bridge Piers," *Alexandria Engineering Journal*, July, 1995.
- [13] A.J. Raudkivii and A.J. Sutherland, "Scour at Bridge Crossings, " road research Unit, National Roads Boards, N.Z. Bulletin 54, 1981.
- [14] A.A. Yassin and M.A. Rezk, "Maximum Clear Water Scour at Cylindrical Piers Constructed on nonuniform Bed Material," *Alexandria Engineering Journal*, vol. 28, No.2, July, 1989.
- [15] A.A. Yassin and M.A Rezk, "Maximum Clear Water Scour at Cylindrical Piers Constructed on Uniform Bed Material," *Alexandria Engineering Journal*, vol. 28, No.3, July, 1989.