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A free-surface flow past submerged two identical triangular obstacles at the bottom of a channel is
considered. The flow is assumed to be steady, two-dimensional and irrotational; the fluid is treated
as inviscid and incompressible. The problem is solved numerically by series truncation. It is shown
that there are solutions for which the flow is supercritical both upstream and downstream. The results
are plotted for different triangle heights, spacings of the obstacles and different values of the Froude
number F>1. The effect of Froude number, the bottom height and the shape of the triangle on the

free surface is discussed.
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1. INTRODUCTION

Fluid flow over various topographies has attracted
considerable attention throughout the history of fluid
mechanics.

Lamb [18] calculated the flow past a submerged
semi-elliptical obstacle by an approximate linear
theory. He obtained solutions with a train of waves
downstream for subcritical flow and solutions
without waves for supercritical flow. Recendy Forbes
and Schwartz [9] and Forbes [8] solved the
corresponding exact problem numerically. Their
results confirm and extend Lambs solutions. Also
we may mention in particular the work of Kreisel
[17], Benjamin [4], Newman [20], Madison and Mei
[19], Johnson [13], Hamilton [11], Smith and Lim
[23], Boutros, Abd-el-Malek and Hanna [6],
Abd-el-Malek, and Hanna [2], King and Bloor [15]
and Abd-el-Malek, Hanna and Kamel [3].

For subcritical flows, there have been the papers of
Salvesen and Von Kerczek [21,22], Korving and
Hermans [16] and Dias and Vanden-Broeck [7].

For critical flows, there have been the papers of
Forbes [10] and Hanna [12].

In this paper we calculate the flow past a
submerged two triangular obstacles by a series
truncation procedure. This technique has been used
successfully by Birkhoff and Zarantonello [5],
Vanden-Broeck and Keller [24], Dias and
Vanden-Broeck [7] and Hanna [12] to calculate
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nonlinear free-surface flows.

Solutions including waves downstream are not
considered in this paper. Therefore, we assume that
the flow approaches a uniform stream with constant
velocity and constant depth far downstream.

The type of solutions for which the flow is
supercritical both upstream and downstream is
referred to as " supercritical flow ".

In this paper we numerically solve the case of a
nonlinear supercritical flow of an ideal fluid over
two identical triangular obstacles by specifying the
uniform flow upstream and downstream.

In section 2, we formulate the problem. Solutions
for the two identical triangular obstacles are
presented in section 3. The results are presented
and discussed in section 4.

2. Formulation of the problem

Consider a steady, two-dimensional, incompressible
and irrotational flow of an ideal fluid over two
identical triangular obstacles having 6 corners and 5
straight segments, placed at the bottom of an open
channel at a distance 2L apart, Figure (1a).

The channel is assumed to be of constant width
and depth in both directions faraway from the
obstacle.
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A cartesian coordinate system is selected as follows:
the x-axis coincides with the stream bed before and
after the obstacle, the origin is placed at the mid
point between the two triangles and the y-axis
pointing vertically upwards. Fluid flows through the
channel in the positive x-direction, with speed U
and depth H far upstream.

,
|

o
o
—
il iy
Sl 9
RS- B
— “'_3 4 o oy
Ll Vi N

-3 -1

Figure 1-a. Physical plane of the flow and of the
coordinates.

, Relative to the coordinate axes, the flow is steady
and is subject to the acceleration of gravnty g in the
negative y-dlrectlon

Since the flow is irrotational and the fluid 1s
incompressible, a velocity potential f and a stream
function vy exist, in terms of which the horizontal
and vertical components, u and v, of the fluid
velocity vector may be expressed as

e @.1)

Equations (2.1) show that a complex potential
exists, namely,

x=¢ +iy. (2.2)

Since ¢andy are conjugate solutions of Laplace

equation, ¥ (z) is an analytic function of z within the
region of flow, with complex conjugate velocity

L =%7L =u(x,y)-iv(x,y)=qe®  (2.3)
Zz

The dynamic boundary condition on the free
surface y=Q = U H is
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% |vd |*+gy= constant (2.4)

We introduce the dimensionless varables by
1 1
taking (Qzlg)3 as the unit length and (Qg)3 as the
unit velocity.

The dimensionless discharge is now equal to one.
Hence, the free surface is a streamline on which
y=1. In terms of the dimensionless variables, the
condition (2.4) becomes,

| v |? +2y= constant on § = 1. (2.5)

The complex potential ¥ maps the flow domain
conformally onto an infinite strip of height unity as
shown in Figure (1b). '

J| —‘3 -é ' .I| o !
Figure 1-b. The complex potential plane, ¥ plane.

In dimensionless form,(2.3) becomes

£ =_‘ll.=qe-i9 (2.6)
dz E
Let
@w=1Int=Ingq - ié. @.7)

where w 1s the socalled
variable.
Then, from (2.6) and (2, 7) we get

logarithmic hodograph

z=f e “dy (2.8)

Using a suitable Schwartz-Christoffel
transformation, we map the infinite strip onto the
half of the unit disk with I; and I,
corresponding to the points -1 and 1, respectively as
shown in Figure (1c); the solid boundary goes onto
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the real diameter and the free surface onto the
upper half of the unit circle. The images of the
points  [-3,-2,-1,1,2,3] are [-t3,-t2,—t1,t1,t2t3]
respectively.

.

-1 by ot -k
Figure 1-c. The complex t-plane.

The mapping is given by

x=2ml*t je|<1. (2.9)
x 1-%
Our goal is to find ¢ as an analytic function of t
satisfying the boundary condition

|E|*+2y= constant on [t| =1 (2.10)

and the boundary condition on the real diameter
|t] < 1.

3. SOLUTION

Let us consider here the steady flow over a
symmetric two- triangular obstacles consisting of
a raising-up inclined segment [ -3 to -2 ] of
inclination angle «', Figure (1a), a steeping down
segment [-2 to -1] of inclination angle g', a
horizontal segment [-1 to 1] of the stream bed, a
raising-up segment [1 to 2 ] of inclination angle o'
and a steeping down segmen [2 to 3 ] of inclination
angle §’. Since the two triangles are identical, then

O3 = 0y = w-a =x(l-a)
ay=ay=2w-f =7+ 2a =n (1+2a);

aj=a=7-a =7 (l-a),

r

o

where o= .
T

The first step is to remove the strong singularities
from the complex velocity ¢ which occur at the
corners of the triangles, namely, at the points

t=+t, 1=1,2,3. 3.1)
Those singularities are
|
E~(t+t) ™ t-¥t;i=1,2,3. 3.2)

where the angles q; satisfy the relation

3
Y a=6x . (3.3)
i
i»0

As ¢ - + oo the flow approaches a uniform
supercritical state. Therefore the asymptotic form of
§ as ¢ - + o is obtained by lineanizing the
equations around a uniform stream.

Following Lamb [18] and Abd-el-Malek and
Masoud [1] we solve the resulting equations by
separation of variables.

Hence, we get

£~ £1) + Ae™ as ¢ » + o,

where A’ is a constant and X is the smallest positive
root of the equation

F2\-tn \ =0, (3.4)
F being the Froude number defined by

Fu-2_ . (3.5)

VeH

We now define the function  (t) by the relation

o)l Gl
1-tt, ) | 1-tt, 1-tt, ) {1+t ) | 1+tt, (.6)
"Y1 e00

1+tt,
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The function Q(t)-see Birkhoff and Zarantonello
[5]- is analytic and continuous for | t| < 1.

The boundary condition (2.10) implies that the
expansion of Q (t) in powers of t has real
coefficients. Also since the flow is symmetric with
respect to the y-axis only even powers of t should be
present in this expansion. Therefore ,the expansion
of Q1 (t) can be written as

Q) =A(l-t2)?/~ +Z; ajtzj, 3.7)
)=

where A is determined from (3.4).

If we use the relation t = |t|e'’, then the points
on the free surface are given by t =€, 0 < g < 7.
Using (2.9) and the identity

Jx .0
— +1

1
—, 3.8
¢ 9 & -

we obtain after some algebraic manipulations,

dy__2_ v .1 (3.9)
do ‘It*g‘12+v2 Sing

Differentiating (2.10) with respect to ¢ and using
(3.9) we obtain

a2 2 _4 v(o)
dO[u (6) +vZ(0)] T o 0 (3.10)

Upon substituting t = ei", in (3.6) and (3.7) we
get

E(0) =e A"y G.11)
where

0=a(8,+8,+0_,+0,)-B (B, +8,) + +A LS,

L; = [2 sin o] sin X (o —%),

Lg = [2sin a]* cos A (o —g),
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1-t})sino
( . ) Py l - 1,2137

6 . =tan!

a +t,2)cos o F(2t)

n
S,=)Y acos2joa,
i=0

Sz=z; ajsin2jo,
Js

L .
Y(a)=i£|3[Ax( R -L,)—s,]is—,‘fﬁw, 3.12)
tano TSINo

n
S; = ¥ 2jasin2jo.
j=1

The resulting equation will be used to determine
the coefficients a..

We solve for the a.’s numerically by truncating the
infinite series in (3.'5) at j = n, where n = N- 2; N 1s
the number of unknown coefficients, namely, A, a,
B I

We fix the geometry of the polygon by specifying
the values for t; ,t; , t3, @' = /4.

The N unknowns A, a, ay,... ,a, are determined by
collocation. To do so we introduce the N-1 mesh
points on the free surface

tM = e 7M) | where

T 1
- M-1}iM=1,2,3,4,.N-)  G.13
% 2(N—1)( 2) 5 G

These points are equally spaced on the upper half
of the unit circle. using (3.11) , (3.12) we obtain y,
nonlinear algebraic equations of N uknowns. The
remaining equation is obtained by relating F to the
dimensionless velocity downstream £(1), namely,

F2 =t ? (3.14)

This system of N nonlinear equations of N
unknowns is solved by Newton’s method . Inverting
(2.6) yields
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dz _1
dx &
and thus
dz _1dy (3.15)
dt £ dt

Once we have solved the system of equations
(3.12),(3.14) we calculate the height W of the
obstacle by numerical integration of (3.15) along
the real axis. This leads to

Y
W=sina [ (i’i)ldt
dt

(3.16)
3

4

As a check the integration of the same relation
between t, and tj should give the same W, i.e.,

4
W = sih « f(—(:i—x)ldt
4 tJ8

In order to calculate the profile shape we first
calculate the elevation Z_ of the fluid above the
obstacle at x = 0. To do so we integrate (3.15) along
the vertical axis of the t-plane from t =0 tot =i,
that 1s,

(3.17)

1 i dy 1
Z,= —of —E-dt. (3.18)

id at

Now by integrating (3.15) along the upper half of
the unit circle, we obtain the shape of the free
surface, namely,

1

————ds,0<o<x. (3.19)
& (s)sins

x+iy-izp-%

p|aS— a

4. NUMERICAL RESULTS AND DISCUSSION

A numerical method based on series truncation is
presented to solve the problem of an irrotational,
inviscid, incompressible and steady flow over a
two-dimensionl two-triangular obstacle.

The system of N nonlinear algebraic equations of
N unknowns is solved by Newton's method for
given values of Froude number F.
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The coefficients a, are found to decrease rapidly as
the index n increases which means rapid convergenc.
For example in Table (1) we give the last
coefficient |a_ | for values of n = 5 to 30 in steps of
5 for a small obstacle W = .05 and for a large
obstacle W = .32 when F = 2.0.

Most of the calculations are performed with N =
15, and the nonlinear equations are solved with
relative error of order 107,

We noticed that , by increasing the value of F we
need less terms of the infinite series due to rapid
convergence.

In our study we investigated the effect of the
obstacle height W, the obstacle width 2L and the
Froude number F .

Table 1. values of |a | for the case F = 2.0, o' =
45° 2L = 2.35 for small obstacle W = .05 and for
large obstacle W= 0.32.

|| n 5 10 15 20 25 30
"w-.os 4.07x10° | 4.69x10° | 1.32x10° | 3.02 x 107 | 5.56x10° | 2.66x10”
1.09x107 | 3.41x10° | 1.01x10” | 3.07x10° | 9.54x107

"w-.sz 8.88x10™

4.1 Effect of the obstacle height W :

The elevation of the free surface 3 increases by the
increase of the obstacle height. In Figure (2) we
present 9 for different values of W from 0.05 to 0.32
for F = 2, 2L = 2.35 and o'= 45°.

4.2 Effect of the obstacle width 2L :

The elevation of the free surface decreases by
increase of the obstacle width. When the obstacle
width is further increased the elevation of the free
surface takes the same form as the obstacle . Figure
(3) represents h for different values of 2L from 0.8
to 2.37 and for F = 2, o’ = 45° and W = .25.

4.3 Effect of the Froude number F :

We found that the elevation of the free surface falls
down by the increase of the Froud number. The
computed free surface elevation h is displayed in
Figure (4 ) for different values of F vfrom 1.5 to 3.5
and for W=.05, 2L.=0.8 and «a'= 45°.
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Figure 2. Effect of the obstacles height W for fixed F=2.0
and 2L = 2.35.
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Figure 3. Effect of the obstacles width 2L for fixed F=2 and
- W =0.25.
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Figure 4. Effect of the Froude number F for fixed W=0.05
and 2L = 0.8.
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