EFFICIENT USE OF OPTICAL OVERLAPPING PPM CHANNELS
UNDER PRACTICAL CONSTRAINTS

Hossam M. H. Shalaby

Department of Electrical Engineering, Faculty of Engineering,
Alexandria University, Alexandria, Egypt.

ABSTRACT

Direct detection self-noise-limited optical channel is considered. Overlapping-pulse-position
modulation (OPPM) with at most two positions per pulsewidth is assumed. The depth of the overlap

is 17, where 7 is the pulsewidth and r € [0,0.5] is the overlapping index. Tight lower bounds on

the capacity of this channel are derived. It is shown that, under peak power and pulsewidth
constraints, there exist an overlapping index r < 0.5 and a pulse-position multiplicity M> 3 that
minimize the OPPM energy required to transmit data at a rate equal to the maximum throughput
attainable by conventional PPM, which minimum energy is less than half that for conventional PPM. -
It is also shown that an overlapping index r and a pulse-position multiplicity M exist so that OPPM
has a greater throughput than PPM for a given efficiency.

Keywords: overlapping PPM, optical channel capacity, ambiguity and erasure channel.

I. INTRODUCTION

r is as follows. A rectangular laser pulse is
transmitted in one of M possible positions
{1,2,....M} within a time frame of duration T.A
pulse of width 7 is said to be in position m, m

A common signaling format in direct-detection
pulsed optical communication links s
pulse-position modulation (PPM) in which a
laser pulse is transmitted in one of a finite set

of possible disjoint time intervals. The capacity
and cutoff rate of the self-noise-limited channel
(i.e., the channel with negligible background
and thermal noise) have been examined by
many authors [1-6]. It has been shown that a
signaling rate of about 3 nats/photon can be
obtained with practical coding schemes. Some
of these authors [4-6] have examined the
optimization of channel performance under
pulsewidth and peak (or average) power
constraints.

In Opverlapping-Pulse-Position  Modulation
(OPPM) [7-10], the possible time positions of
the laser pulse are allowed to overlap. The
overlap between two adjacent positions will be
denoted by r7, where re [0,1) is the overlapping
index and 7 is the pulsewidth. If r=0, we have
the ordinary disjoint PPM (called DJPPM in
[7D.

Our model for OPPM with overlapping index
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€{1,2,....M} if it extends over the subinterval
beginning at time (m-1)(1-r) 7 and ending at
time (m(1-r)+r)7. The relation between T, r, M,
and 7 is

T= (M(1-1)+r) 7.

Previous interest [7-9] was given to the
special cases r=1- l, n=1,2, ... (ie.,
n

re{O,l,3 3 5—,...). Error probabilities for this

2°3°4°5
signaling format have been given in [8,9] where
it has been shown that OPPM has a worse
performance than DJPPM. Trellis coded
modulation was applied to OPPM [9] in order to
improve both the performance and throughput
of the system without expanding the
bandwidth. Lower bounds for capacity and
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cutoff rate have been derived in [7], where it
has been shown that OPPM, with r restricted as
above, outperforms DJPPM in terms of both
capacity and cutoff rate under pulsewidth and
power constraints. For large n, the increase in
capacity approaches that for continuous PPM

[7].

We notice that if re (0,-;—], only two laser

pulse positions can overlap at any time. If re
(%,%], three pulse positions can overlap

at a time, and so on. Increasing the number of
pulse positions that can overlap adds some
complexity to the detection system and enforces
more refined timing to be used. Furthermore,
ambiguities and erasures become more frequent
and more complex error-correcting codes will be
required to obtain an acceptable error rate. For
these reasons, we allow at most two pulse

.. . 1
positions to overlap, i.e., we assume r € [0,5].

The performance (in terms of the bit error rate)
of this channel under some communication
constraints has been studied previously in [10].
In that paper we have showed that under
pulsewidth and throughput constraints, uncoded
OPPM (with overlapping index not exceeding
0.3) 1s superior to ordinary PPM in terms of bit
error rate. In other words, we can decrease the
energy required to transmit a given amount of
information without sacrificing either the bit
error rate or the throughput. The overlapping
index r that offers the minimum energy was
shown to vary significantly with the throughput
constraint and should be chosen carefully from
characteristic curves as those given in [10]. The
main objectives of this paper are:

1) To derive tight lower bounds on the capacity

of the OPPM channel with r € [0,0.5].
2) To show that, under pulsewidth and peak
power constraints,

a) there exist a pulse-position multiplicity M>
3 and an overlapping index r €[0,0.5] that
minimize the energy required by an OPPM
system such that its throughput capacity is
at least equal to maximum DJPPM

throughput--this yields more than a 100
percent increase in OPPM efficiency (as
a measure of energy saving) over DJPPM
for moderate numbers of photons per
pulse; and

b) there exist a pulse-position multiplicity M

and an overlapping index r that maximize
OPPM throughput under the constraint
that its efficiency is at least equal that of
DJPPM with M=M", where M" denotes
the pulse-position multiplicity
corresponding to maximum DJPPM
throughput (M' is known to be three)-
this yields a 50 percent increase in the
throughput.

The paper is organized as follows. The
channel model, as well as capacity bounds, are
given in Section II. Section III is devoted to the
efficiency maximization problem, while the
throughput maximization problem is treated in
Section IV. Concluding remarks are given in
Section V.

II. LOWER BOUNDS ON OPPM
CHANNEL CAPACITY

Define the following subintervals within the
time frame (0, T):

Jo (m) =(m(1-r)t,(m(1-1)+1)1),

Ji (m) =(((m-1)(1-1)+r)7,m(1 -1),7).

The demodulator output corresponding to
transmitting a pulse in position m, me
{2,...,.M-1} will be one of the following:

(1) m: if photons are detected in subinterval
Ji(m) or in both J, (m-1) and J (m).

(i1) an ambiguity a(m-1,m) between positions
m-1 and m:if photons are detected only in
subinterval J (m-1).

(i11) an ambiguity a(m,m+1) between positions
m and m+1:if photons are detected only in
subinterval J (m).

(iv) an erasure e: if no photons are detected
through the frame.

The resulting OPPM channel model

(ambiguity and erasure channel) for r ¢ [0,0.5] is
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illustrated in Figure (1). The input random
variable X denotes the position of the
transmitted pulse, whereas the output random
variable Y denotes the demodulator output. To
calculate the transition probabilities in this case,
we denote by N(I), the photon count observed
in the subinterval 1. Since we are dealing with
a self-noise-limited optical channel, each of
these counts is a Poisson random varable.
Denote by Q the average photon count per
pulse. It is obvious that Q is proportional to the
peak power for fixed 7. Assuming that a pulse is
transmitted in position m, m &2, ..,M-1}, we
obtain

Py x (e|m)
= Pr {N ((J(m-1) |JJ; ()| J J,(m)) =0}
= exp [- Ql,
Py|x (a(m-1, m) [m)=Pr {N (J,(m-1))# 0,
N ) U T,@) =0}
; (1-exp [-Qr]) exp [-Q (1I- 1),

and

PYIX (a(m,m+1)|m = pY]X (a(m-1,m) |m).

\ Bl
>’ a(1.2)
2 - — — 2
a(2,3)
3 ’ 3
M > M-
a(M-1,M)
M M
e

Figure 1. Ambiguity and erasure channel.
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Thus, we can write

[ 1-2e%UD+e"Qif y=m,
e Q(1-1) -e " ify=a(m-1,m)
Ple(yIm)=< or a(m,m+1),

e if y=e,

0;otherwise,

For X=1 or M, there are only three possible
channel outputs. The transition probabilities for
m=1 are given by

1-e20;ify =1,
Q1-9_eQify=a(l,2),
PY|x(Y|1)= A
e Qify =e,

0;otherwise,

The transition probabilities for m=M are similar.
The mutual information for our channel
model is given by

(X AY)=Y ny(x,y)logw
ty P, (¥)

M-1
__(C-Q(l-r)_e-Q) . E (Px(x) "'Px (x+1))
x=1
. log (Py (x)+ Py (x+1))
- (12 9y (P ()log Py(1)+Px(M)logPy (M)}

M-1
- (12 eQ04eQ) T Py (x)logPy(x). (1)
x=2

To find capacity, we want to maximize I(X AY)
over the input distribution Py. The symmetry
of the channel ensures that the maximizing
input distribution satisfies

Py(i)= Py (M-it1), i=1,2,.[ -1;1 !

For the special case of M=2, it follows that
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Py(1)=Py(2)= % By substitution 1n (1), we get

the corresponding capacity
C,(n)= (l-e'Q(l")) log 2 nats/channel use.

An explanation to this simple formula can be
seen by noticing that for M=2, the channel
reduces to the familiar binary erasure one
because PY|X (a(1,2)| 1)=PY|X(a(1,2)|2), so that
a(1,2) can be combined with the erasure symbol
e to give the above formula.

For M =3, we derive lower bounds on capacity.

First, we define the following function:

f(p,; M) = - 2 (2 (1) _ Q)

(LMo, 1+ M-d)p
M-2 M-2

1-2p, 2(1-2p)
-3 1
+M )M—2 %8 — 12 }

-2(1-¢9 (1")) plog p
-(1-2e9209 4 Q) (1-2p)

1-2p
M-2’

log

where 0 < p < 1/2.

Theorem 1: If Q is the average photon count
per pulse, then the capacity of the optical
OPPM channel with M pulse positions and
overlapping index r ¢ [0, 0.5] is lower bounded
by

Cp(n) = Iy (),
where I (r) = f(p‘,r,M) and p'k is the solution

of ﬂ (p,r;M)= 0.
op

Proof:
Cy (=max IXAY) = I,

Px

where I} is the value of I(X A Y) for

p; ifx=lorM,

Px®=11-2p. i orwise
‘ M-2’ ’

with 0 < p < 1/2. Substituting in (1) yields I},
=f(p,r,M). Hence

Cy() = max f(p,, M)=f(p",r,M),
pe[0,1,/2]

* . o .
where p is the solution of the equation

O (o6 M)=0.
op

III. EFFICIENT USE OF OPPM UNDER
PULSEWIDTH, PEAK POWER, AND
THROUGHPUT CONSTRAINTS

In this section we aim at minimizing the
OPPM energy required to transmit data at the
maximum DJPPM throughput, given
pulsewidth and peak power constraints. We
study two different cases (A and B). In case A
we assume that the peak power is fixed through
the optimization, whereas in case B, the peak
power is allowed to vary in a way such that it
does not exceed a maximum value.

The capacity per second (throughput) and
capacity per photon (efficiency) are given by

IR <05 S )
Cp(n) T Md-1 01 nats/s
and
Cy(m C,M
Cph(r) = Q = g nats/photon

respectively, where A is the peak source
intensity and Q= A7 is the average photons per
pulse. Setting r=0 in the above equations yields
the capacities for DJPPM, which are

known to be

Cym(0) = (l-e"Q) log M nats/channel use,
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C{0) = (1{0)%? natsfs

and
Cph(O) = (l-e'Q) IO—EM nats/photon .

For fixed pulsewidth and peak power, let
C+™(r) denote the maximum throughput

T ghp
given re [0,0.5], i.e.,

Cr™ (r) = maxy; Cp (0).
It is well known [7] and easy to see that, for

DJPPM (r=0), the maximum throughput (given
Q) 1s attained for M=3. That is

") -(1{0)-’1;%?1 = 0—'3:5(1 9. (2)

Define the following lower bounds on the
capacities:

Lo Lo
0 = = " M™a-ne
and
I
Iph(r) = L(® =—M~—(£)— nats/photon,

where Iy,(r) is given in Theorem 1. Clearly (cf.
Theorem 1) Cph(r) > Iph(r) and Cp (1) 2 I(r).

Case A. Optimization under fixed peak power

We consider the following optimization
problem. Fix the pulsewidth and peak power of
the OPPM system. Vary M and r ¢ [0,0.5] so as
to maximize the OPPM efficiency under the
constraint that the throughput is at least equal
to C1™(0). In other words, we have the
following maximization problem:

max C_ ()
M,r ph
Cr@:Cy©

for fixed peak power and pulsewidth. Instead of
the above (time consuming and complex)
optimization we study the following simpler
problem:

max L, () 3)
M,r
Ip®)2CTO®

for fixed peak power and pulsewidth.
Clearly,

max Cph (r)2 max Iw(r)
m,r M,r
Cr():CT O Ip®)2CT©®

because Cph(r) > Iph (r) and M,z I(r) =
C™0)} C {M,:C-(r) 2 C™(0)}. If we define

Ip= max L,(0)

I1®2Cp @

then (3) is equivalent to

oo™

Iphm(r) is plotted in Figure (2) for different
values of Q. From the figure we can see that
I, (r) attains its maximum at some point r<0.5.
&e notice that, during some intervals of
overlapping indices, the curve decreases as r
increases. This is because increasing r causes
the ambiguities to be more frequent which
leads to a decrease in the efficiency. Obviously
the throughput increases with r, but trying to
increase M (in an attempt to raise the
efficiency) during these intervals will cause a
drop in the throughput below the constraint
C1t™(0). Fortunately, increasing r more and
more will lead to enough rise in the throughput
and there exist instants where we can increase
M without disturbing the constraint.
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L ()>0.165

e 1-(r)>0.231
z Q=06 .
= o8 \4\ :
Q -_{ -\.\A i r\_
z ——
_ 08 — ~ 'T(r)>:.i1/7_~,§_(
e 2

T —] 1,(r)>0.355

&5 — —
_35
2
a4 0.2 0.3 0.4 0.5

- Overlapping index, r

Figure 2. I ;™ (r) versus the overlapping index
for fixed pulsewidth and peak power.

The sharp jumps in the ‘curve correspond to
these instants. The behavior of the curve after
a jump, can be estimated by noticing that
immediately after a jump we can write I.(r) =
C1™(0), whence

L@ M1 -1)+1)
A

g Iphm(r) -

G OMA-n )
N A
This quantity decreases as r increases, as long as
M is constant.

It is seen from Figure (2) that for Q=0.6
(photons/pulse) the maximum increment of
OPPM efficiency over DJPPM is about 23%
(achieved for r = 0.46). This increment is about
40% for Q=1, 72% for Q=2, and 101% for
Q=3.5. The percentile efficiency increment
log 13 -log3

log3
increases, and approaches infinity. Indeed, we
have

increases

x 100 = 133.47% as Q

max ... Cph(r) = C;h ©)
Cr®xCp ©
Cpu(0)
max ., Cy@) -Cy(0)
Cr©:27’©

Cu(0)

max ., I,®-Cy(0)

IT®:Cr ©
G0

Taking the limit in (2) as Q - oo yields
C™(0)> lo

3 and Cy"(0) — log 3. Applying
T

3
Theorem 1 for Q - o0, we obtain
Iy log M
and
L @

M(1-D+nT

Since I(r)= C1"(0), then

logM  _ log3 _
M( -1) +r 3
In view of Cyy(r)-log M, we seek the maximum
M satisfying the last inequality. Since r ¢ [0,0.5],
M satisfying the last inequality increases as r
increases. Hence we seek the maximum M

satisfying

logM  _ log3
05M+0.5 3
This yields M=13. Thus Cyy(r)-»log 13 and

max I,,(r) -Cy (0)
M,r:
I 2C7 O
Cyu(0)

-
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log13 -log3
log3 '

Case B. Optimization under upper bound on
peak power

We notice that we can increase the efficiency
of OPPM by decreasing the peak power (Q) in
addition to increasing M. Decreasing Q,
however, leads to a degradation in the system
performance because in this case the
transmitted energy per pulse becomes less.
Error correcting codes are thus necessary and
the system is more complex than in case A.
The maximization problems in case A are now
modified to:

max C_(1)
M,r,Q: pb
Cr@2C1'®.QsQo

and

max (3]
M,r,Q: Iph
170 2C7 (0),Q5Qo

for fixed pulsewidth. Here Q corresponds to
the ultimate energy per pulse. Iphm(r) is thus
modified to

" () = fnéx Ls(®

17()2C1'©.Q3Qo

Iphm(r) is evaluated numerically, according to
the last optimization problem, and plotted in
Figure (3) versus r. We found that for small
values of Q, the maximum efficiency is

achieved when Q = Q, (independent of r);
which indicates that cases A and B are
equivalent as long as Q, < 1. On the other
hand as Q_ increases, Q achieving the best
efficiency depends on r and is always less than
Q,- This obviously means that we have a larger
gain in efficiency than in case A. Indeed, for

Q,=3.5 the gain now is 132% instead of 101% in
case A and for Q_ =2 the gain is 74% instead of
72%. If, however, Q, =1 the gain is the same as
in case A, i.e., 40%.

1.2
1 -
—
& T~
S 1,(9>0.231 r\
O o8 —
-g. r\\J il
~ = i
2 -&1\) K/If(-r;:o.an
g
i [,(1)>0.355
-
E5
0.4
0.2 -
0 0.1 0.2 03 0.4 06

Overlapping index, r

Figure 3. Iphm (r) versus the overlapping index
under peak power constraint.

IV. MAXIMUM OPPM THROUGHPUT
UNDER PULSEWIDTH, PEAK
POWER, AND EFFICIENCY
CONSTRAINTS

The objective in this section is to find
maximum OPPM throughput (under peak
power and pulsewidth constraints) such that the
efficiency is not less than Cph'(()). This is useful
when high data rates are desired. We thus
consider the optimization problem:

max C,(r)
M,r
Cpu)2Cp ®
and

max Cr (@).

Cpu®2Cpy
As argued above we consider instead the lower
bound
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max I7(1),

Ln®)2Cpy ©

where [ (r) = maxy Ip(r). IT™(r) is plotted in
Figure (4) along with the corresponding I;,(r).

0.8
yr 150 1dn) |
t}7r“~ __i:,,__% : o ~.
P PO
0.6 Q=1 TN

o
[

(r) nats/slot, Iy (r) nats/photon
=]

m

T
o
[~

0 0.1 02 | 0.3 0.4
Overlapping index. r
Figure 4. I™ (r) and corresponding Iph (r)
versus the overlapping index for fixed
pulsewidth and peak power.

We can see only one jump occurring in Iph(r)
which indicates that M increases from 3 to 4 .
For Q=1 the above maximization is attained for
r = 0.4, where we have an OPPM throughput
advantage of about 6.5% over DJPPM. The
advantage is about 21.5% if Q=2 and 34.78% if
Q=3.5. The value of the advantage increases as
A\ increases (always achieved for M=4) and
approaches

logd _log3
4-(4-Dx05 3  100.51.42%
log3 -

3

as A goes to oo. Indeed in the first term in the
numerator we substitute M=4, r=0.5 in the

limiting expression for I(r) as given in (4). In
the second term, however, we substitute the
maximum throughput for PPM. OPPM loses its
advantage over DJPPM for small values of Q

(Q<0.2).

V. OCCLUDING REMARKS

We restricted our study to an overlapping index

r € [0,0.5] because as the number of pulse
positions that are allowed to overlap increases
the complexity of the system increases, more
refined timing will be required, and final error
rate increases.

Our results in Section III were obtained
under the requirement that the throughput
capacity of OPPM should exceed the maximum
throughput attainable by DJPPM. These results
would still be valid if we demanded that the
throughput should exceed some fixed (not
necessarily the maximum) quantity. This last
conclusion also applies in a similar way to the
results in Section V.
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