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ABSTRACT

An automatic control system using a feedforward neural network is proposed for four-wheel-steering
passenger cars to mimic the behavior of human driver. The control system consists of two identical
two-layer-feedforward networks and a feedback of the car heading deviation. One neural network acts
~as an emulator, and the second represents a feedforward controller. The synaptic weights of the
networks are adjusted according to the generalized adaline weight adaptation algorithm.”The duration
of the general learning was 500 s, and no measurements were acquired. Computer simulation was
carried out to evaluate the performance of the proposed system in tasks involving lane keeping on
a curving roadway at different speeds, gusting side wind, and an obstacle-avoidance maneuver. The
results showed that the system displayed good driving performance, and was capable of reproducing
the steering performance of human driver. The system realized rapid, comfortable, and stable

responses in the different tasks.
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INTRODUCTION

Four-wheel-steering (FWS) systems for
automobiles have been actively studied as one of the
latest automotive technologies. Properly designed
systems can improve the maneuverability of vehicles
at low speed and cruising stability at high speed. A
simple speed-dependent ratio between rear and front
wheels was used in an open-loop controller to
achieve zero steady-state, side-slip angle during
directional maneuvers [1]. This controller is simple
but it may not perform well during transient motion.
On the contrary, closed-loop controllers are robust
and improve directional stability because they
modify the driver steering command to the vehicle’s
front and rear steering wheels according to measured
vehicle conditions. Whithead [2] examined a linear
feedback combination of yaw rate and front-wheel
steer angle to command rear-wheel steer angle. Lee
[3] investigated the LQR control law in both
stability and command augmentation systems to
improve the response te disturbances at highway
speeds on straight roads. Karnopp et al. [4]
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illustrated the potential improvements as well as
limitations inherent when the rear wheéls, the front
wheels, or both were steered by a feedback control
scheme. Xia et al. [5] used a nonlinear bicycle model
of an automobile, and linear control law with speed-
based gains to examine the response of the vehicle
to combined steering and braking inputs. Ackermann
et al. [6] derived a robust decoupling control law by
feedback of the yaw rate to both the front and rear
wheel steering.

The implementation of model dynamics of driver
steering enhanced the development of advanced
vehicle steering. Lee [7] addressed the control-law
design of a preview steering autopilot for an FWS
vehicle to perform automatic lane tracking. The
steering autopilot design was formulated as an
optimal, discrete-time preview path tracking problem
under the '"perfect measurement" assumption.
Modjtahedzadeh et al. [8] presented a theoretical
control model of the behavior of driver steering. The
model contains both preview and compensatory
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elements. With these classical models, the control
provides robustness over a small range of
uncertainty. In addition, the control modes cannot
cope with sudden changes of a payload due to
gusting wind and changes in cruising velocity. Since
the model of drniver steering should be based on
physiological and morphological information, neural
networks may be considered in this application.

A neural network (NN) is a system of
interconnected elements modeled after the human
brain. With neural networks, the problem of control
can be considered as a pattern-recogniticn problem.
The pattern to be recognized is "change signal" that
maps into "action signal" for specified system
performance. The intelligent controller should
recognize and isolate patterns of change in real time
and "learn" from experience to recognize the change
more quickly, even with incomplete data. The
properties of pattern recognition and mapping with
ever-improving self-organization and decision making
are some of the potential advantages when using
artificial  neural networks for design and
implementation of intelligent controllers [9].
Shiotsuka et al. [10] have recently used NN to
control an FWS car. They applied two kinds of
active-control systems. In the first system, NN was
used to adapt the feedforward and backward gains of
the controller. This system was simple but
unreliable. In the second system back-propagation
trained NN was used to generate the rear steer angle
only, while the front steer angle was the drver
input. Although the latter was reliable, the design
was complex, acquiring measured data, and the
learning time was long.

The objective of this paper is to implement neural
network-based control to mimic the behavior of
human driver by generating the steer angles of both
front and rear wheels. The performance of the
controller is evaluated in tasks ranging from lane
keeping on a curving roadway to an obstacle
avoidance. The effects of side wind and braking
maneuver on the system response are also examined.

STEERING DYNAMICS MODEL
The essential features of car steering dynamics in

a horizontal plane are described by the "bicycle
model" shown in Figure (1). In this model it is
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assumed that: 1) the vehicle is symmetrical about a
longitudinal plane through the center of gravity, 2)
relatively small yaw rate and lateral velocities are
experienced by the vehicle in high-speed cruise, 3)
the relatively small aligning torques are neglected,
and 4) there is no pitch, roll, or heave motion and no
longitudinal velocity perturbations. It should be
noted that friction at wheels is not included in the
model since frictionless wheels represent the worst
condition with respect to steerability. On the other
hand, the friction force at the wheel will not be
greatly affected either by the load or by the road
condition because such a state-of-the-art car is
equipped with an active suspension and an antilock
braking system. The active suspension reduces the
fluctuations in wheel-to-road contact force, while the
antilock brake minimizes the slip for the four
wheels. Therefore, the friction force can be
considered as disturbance load which can be adapted
during . the learning mode.

Figure 1. i}icycle model for car steering.

Since the forward speed, U, is kept constant, the
resulting model has two degrees of freedom
represented by the lateral velocity v, and the yaw
rate . The equations of motion are derived as
(Appendix A):

I i (azcaf+b2Car) (acaf~bcar)
+
zz]: + U I U v (1)
=aC5 -bC,5 -LW

(acaf—bcur)r + Caf+Carv

U (2)

My + MU+
= Cafaf * Caxar - W
where a and b denote the distances between the

vehicle c.g. and both front and rear axles, .
respectively. M nd I, are the mass and the yaw
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moment of inertia of the vehicle, respectively. C ¢
and C_ represent the front and rear cornering
stiffness of each tire, respectively. §; and §, are the
front and rear steer angles. W is the wind load and
L is the location of the center of pressure.

Figure (2) shows the lane-tracking steering
geometry. S is a curvilinear distance variable
measured along the centerline of the roadway. The
rate of change of the heading of the local tangent to
roadway with respect to S defines the roadway
curvature p,.. Considering Ay and Ay as the heading
and lateral offset of the vehicle c.g. from the
centerline of the roadway, then the following
relations hold for small v/U and Ay

Ay =t -U p, 3)
UAYy + v 4)

Cenler Line of

¥ _— Road Lane

Figure 2.. Lane tracking geometry.
NEURAL-NETWORK MODEL

Artificial neural networks (ANN) can be classified
according to their feedback link connection structure
«into: 1) recurrent (global feedback connection), e.g.,
Hopfield NN, 2) locally recurrent (local feedback
connection), e.g., cellular NN, and 3) nonrecurrent
(no feedback connection),e.g., perceptions. A special
type of nonrecurrent ANN is the feedforward neural
network (FNN). It consists of layers of neurons with
synaptic weighted links connecting the outputs of
neurons in one layer to the input of neurons in the
next layer. Psaltis et al. [11] used an FNN-based
feedforward controller within a general plant control
system. They proposed general and specialized
learning architectures that used the error back
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propagation method to adjust the FNN link weights.
Kawato et al. [12] used a feedback error learning
architecture to teach the inverse dynamic model of
a voluntary movement to an FNN. Their control
architecture has the following advantages: First, the
desired output of the inverse dynamics model is not
required. Second, learning and control are done on-
line. Third, error back propagation through the plant
is not required. Nguyen et al. [13] showed that FNN
can learn on its own to control a nonlinear dynamical
system. They used two FNN’s as an emulator and a
controller. Chen [14] used back-propagation trained
FNN within a self-tuning control system to control
single-input  single-output feedback linearizable
system. Excellent tracking results were obtained for
a nonlinear system but the training time was
excessive. Kuschewski et al. [15] discussed methods
for identification and control of a dynamical system
by adaline, two-layer, and three-layer FNN using
generalized adaline weight adaptation algorithms.
Good results were obtained and learning time was
short. None of the previous papers addressed FWS
steering control except Shiotsuka et al. [10] who ,as
stated earlier , applied the error back-propagation
method.

In this work, a two-layer FNN and the generalized
adaline weight adaptation algorithms [15] are used to
control both the front and rear steer angles. The
weight adaptation algorithm is presented in the next
section.

Two-Layer FNN Weight Adaptation Algorithm

A block diagram of the two-layer FNN is showed
in Figure (3). At the time increment k, xeR" is the
input signal vector which 1s assumed to be constant
during the time increment. WlkeR“I’“ is the first
synaptic weight matrix. TeR"! is an odd activation
operator, zkf:R"1 is the input vector to I and ylch"I
is the output vector of T\ W2ksR“2 nl js the second
synaptic weight matrix. y, and y4 €are the output
and the desired output vector. € is the output error
vector. nl, and n2 are the number of neurons in the
first and second layer, respectively. The synaptic
weight adaptation algorithm is given by:.

w1

= WL o+ AWL ()
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where
-2z, 0,7(x
AW1, = 2505 ® 8, T(x)x#0
0, "(x)x
= 0 if 6,T(x)x=0
W2, = W2, + AW2,
where
Ae,0,T(y1
AW2,= -2w2k-—fT£—*’-—(’-'—*) if q+0
0, (G1yl,
= 0 if q =0
_ AT
q =06, @1y yl,
and
e = I —A) g
X z

Adaptation

Algorithm

Figure 3. Block diagram of a two-layer FNN.

6, and 6, are odd operators, I is the identity matrix,
and A eR™™2 js the error reduction matrix. To
obtain the asymptotic error converging to zero, A
must be chosen such that the eigne values of (I,,-A)
are placed in the left-hand side of the complex
plane.

FNN-Based Controller
An ideal sampler (IS) of sampling period T and
zero-order hold (ZOH) are connected to the FNN

for input signal sampling. The three connected
elements represent the FNN module (FNNM). The
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block diagram of the control circuit is shown in
Figure (4). Two identical FNNM in conjunction
with a feedback of the heading deviation are used.
The master FNNM is employed as an emulator.
The slave FNNM represents the neural feedforward
controller. It acts as the inverse of the plant,
producing from the desired yaw rate the steer angles
which drive the vehicle. The input to The FNN is
the desired yaw rate with n=3 and sampling period
of 0.05 seconds. The number of neurons in the first
layer is 6 and in that in the second layer is 2. The
neurons activation operator is chosen as I'(x)=x. The
operators in the weight adaptation algorithm 6;, and
6, are chosen as sgn(x) where

+1 if x>0
= -1 if x<0

sgn(x) =

For accurate training , A is selected as

07 .07
07 .07

N
Adaptation | o "
Algorithm 65 s
- J
i .[-E}_.. SFl;‘AVE _,@__:@ u Plamt ¢ Master
NM A ‘)‘# FNNM
N N

Figure 4. Block diagram of FNNM-based control
circuit.

The FNN was trained off-line according to the
architecture in Figure (5) to minimize the overall
error £2. Small and random numbers were assigned
to the initial weights of the FNN. A plant input was
selected and the network was trained to reproduce
that input from the plant output. During training
stage, a dynamic model of the plant is required.

Since the error signal (Ay) is the feedback signal,
training of the network will lead to a gradual
switching from feedback to feedforward action as the
error signal becomes small.
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DISCUSSION- OF RESULTS

Computer simulation of the FNN-based controller
implemented in the four-wheel-steering system was
carried out for a passenger car with the following
characteristics: a= 0.946 m, b= 1.719 m, [ = 2618
Kg.m% M= 1175 Kg, C = 48000 N/rad, and C_ =
42000 N/rad.

0 o| Plant | _ "
+ l
€
I ' Neural
Network |
N
A

Figure S. Block learning architecture.

The FNN was trained off-line by repetitively
experiencing a selected input pattern to a plant
model with U=22.22 m/s (80 km/hr) and W=0. The
input pattern was : §; =0.024 sin (wS/320) and
6,=0.0164 sin (7S/320). After learning time of 500
seconds the overall square errors in the front and
rear steer angles were minimized to 0.348 *10# and
0.209*104, respectively. Once the FNN learned the
inverse dynamic model it was interfaced with the
vehicle. The performance of the network was
evaluated in the following tasks.

1- Lane-Keeping Task At Different Speeds

The task consists of maintaining the vehicle in the
center of the lane while following a curving roadway.
The roadway curvature is shown in Figure (6). The
system responses were obtained at three vehicle
speeds: 27.777 m/s (100 km/hr), 22.22 m/s (80
km/hr), and 16.667 m/s (60 km/hr). Figure (7) shows
that no significant discrepancies were detected
between the desired and the resulted yaw rate.
Although the FNN was trained at U=22.22 m/s, it
was able to track the road accurately at faster speed
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of 27.77 m/s. The vehicle braking to 16.667 m/s did
not affect the system performance. The front and
rear-wheel steering angles are illustrated in Figures
(8) and (9). No overshoot was exhibited in the
response of both angles. For U equal to 16.667 m/s
or 22.22 m/s the operation was smooth. As the
forward 'velocity increased to 27.777 m/s, small
oscillations were traced, particularly at the end of the
road curvature. These oscillations are attributed to
the discontinuity at the beginning and the end of
the road curvature shown in Figure (6). To
eliminate the oscillations, clothoids should be added
between road segments. Also, filtering the input to
the slave FNN may be justified. This 1s to account
for the fact that drivers often internally generate
desired paths which are smoothed version of the
commanded path implied by lane centerline. Since
the objective of the paper is to investigate the FNN
performance for various uncertainties and
disturbances, the results were obtained for
discontiuous curving roadway. Figures (10) and (11)
present the heading and lateral deviations,
respectively at different speeds. The heading
deviation was kept as small as 0.05 deg. , compared
to 0.1 deg. obtained using a preview autopilot
control [7], and 0.402 deg. resulted from the driver
model [8]. The resulted lateral deviation increased as
the vehicle speed increased. The maximum values
were 0.01 m, 0.043 m, and 0.094 m for U=
16.667m/s, 22.22 m/s, and 27.777 m/s, respectively.
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Figure 6. Road curvature used in lane-keeping task.
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Figure 7. Desired and resulted yaw rate response in
lane-keeping task.
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Figure 8. Response of front steering angle in lane-
keeping task.
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Figure 9. Response of rear steering angle in lane-
keeping task.
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Figure 10. Response of heading deviation in lane-
keeping task.
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Figure 11. Response of lateral deviation in lane-
keeping task.

2- Simulation With Side Wind

In this task the car was moving at 22.22 m/s,
following the curving roadway shown in Figure (6),
and subjected to side wind gusting at a speed of 50
km/hr. As indicated in Equations (1) and (2), the
wind produces both torque and lateral force. To
overcome the wind effects, the rear wheel steering
angle was sharply increased but there was a minimal
increase in the front steering angle as shown in
Figures (8) and (9). When the car was proceeding
along the curved road segment, the control resulted
in stable performance with maximum lateral and
heading deviations of 0.065m, and 0.1 deg,
respectively. As the road became straight, the
heading deviation reached its zero value, and the car
was laterally displaced by 0.0Z m.

Alexandria Engineering Journal, Vol. 34, No. 4, October 1995



REZEKA: A Simulation of a Feedforward Neural Network for the Automatic Control.... Attenuation...

0.02

0.01 |-

-0.01

T

ROAD CURVATURE, 1M
o

~0.02 : : , s
0 50 100 150 200 250
DISTANCE . M
Figure 12. Road curvature used in obstacle-
avoidance maneuver.
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Figure 13. Desired and resulted yaw rate response
in obstacle- avoidance maneuver.

3- Obstacle-Avoidance Maneuver

The task involved an aggressive maneuver in
which the car had to avoid an obstacle or to pass
another car which suddenly appeared in the path.
The road curvature for the maneuver is depicted in
Figure (12). It was assumed that the car was moving
at a speed of 22.22 m/s such that the duration of the
maneuver was 9 seconds. The FNNM-based
controller displayed a good driving performance
during the maneuver. The resulted yaw rate agreed
with the desired one as indicated in Figure (13).
Due to the sharp changings of the vehicle’s heading
within short duration, both the maximum heading
and lateral deviations (Figures 14, and 15) increased
as compared to those associated with task # 1.
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Meanwhile, the maximum percentage error in the
car heading orientation during sharp maneuver was
0.58% as compared to 0.3% during the gradual
heading change.
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Figure 14. Response of heading deviation in

obstacle-avoidance maneuver.

0.2

|
I
—
T

ILATERAL DEVIATION, M
o
o —
)

i I

S 10 15
TIME . S ’

|
e
N
(=)

Figure 15. Response of lateral deviation in obstacle-
avoidance maneuver.

CONCLUSIONS

An automatic feedforward neural network-based
control is proposed for FWS passenger cars. Two-
layer FNN and generalized adaline weight
adaptation algorithm were applied to generate both
the front and rear-wheel steer angles. Since the
proposed technique requires neither an accurate
model nor parameter estimation, a bicycle model of
vehicle dynamics was acquired for general training of
the network. The learning time duration was 500 s
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only. Computer simulation was carried out to
evaluate the control system in tasks involving lane
keeping on a curving roadway at different speeds,
gusting side wind, and an obstacle avoidance
maneuver. It was found that the FNN-based control
is capable of reproducing the steering behavior of
human driver. The system realizes rapid,
comfortable, and stable responses in the different
tasks.

REFERENCES

[1] S. Sano, and S. Shiraishi, "Four Wheel Steering
System With Rear Wheel Steer Angle
Controlled as a Function of Steering Wheel
Angle", SAE Paper, 860625, 1986.

[2] J.C. Whitehead, "Four Wheel Steering:
Maneuverability and High Speed Stabilization",
SAE Paper, 880642, 1988.

[3] AY. Lee, "Vehicle Stability Augmentation
System Design Using Parameter Optimization",
ASME Journal of Dynamic Systems, Measurement,
and Control, vol. 112, pp 489-495, Sept. 1990.

[4] D. Kamnopp and D. Wuh, "Handling
Enhancement of Ground Vehicles Using
Feedback System Control, ASME Publications,
Advanced Automotive Technologies, DSC, vol. 13,
pp 99-106, 1989.

(5] X. Xia and E.H. Law, "Response of Four-
Wheel-Steering Vehicles to Combined Steering
and Braking Inputs", ASME Publications,
Advanced Automotive Technologies, DSC, vol. 13,
pp 107-127, 1989.

[6] J. Ackremann and W. Sienel, "Robust Yaw
Damping of Cars with Front and Rear Wheel
Steering", IEEE Trans. on Control System
Technology, vol. 1, No. 1, pp 15-20, March 1993.

[7]1 A.Y. Lee, "A Preview Steering Autopilot Control
Algorithm for Four-Wheel-Steering Passenger
Vehicles", ASME Journal of Dynamic Systems,
Measurement, and Control, 1991.

{8] A. Modjtahedzadeh and R.A. Hess, "A Model of
Driver Steering Control Behavior for Use in
Assesing Vehicle Handling Qualities", ASME
Journal of Dynamic Systems, Measurement, and
Control, vol. 115, pp 456-464, Sept. 1993.

A 352

[9] B. Bavarian, "Introduction to Neural Networks
for Intelligent Control", IEEE Control System
Mag., vol. 8, pp 3-7, Apr. 1988.

[10] T. Shiotsuka, A. Nagamatsu, K. Yoshida and
M. Nagaoka, "Active Control of Drive Motion
of Four Wheel Steering Car with Neural
Network", SAE Paper, 940229, 1994.

[11] D. Psaltis, A. Sideris and A.A. Yamamura, "A
Multilayered Neural Network Controller",
IEEE Control System Mag., vol. 8, pp 17-21,
Apr. 1988.

[12] M. Kawato, Y. Uno, M. Isobe and R. Suzuki,
"Hierarchial Neural Network Model for
Voluntary Movement with Application of
Robotics", IEEE Control System Mag., vol. 8,
pp- 8-16, Apr. 1988.

[13] D.H. Nguyen and B. Widrow, "Neural
Network for Self-Learning Control System",
IEEE Control System Mag. vol. 10, pp. 18-23,
Apr. 1990.

[14] F. Chen, "Back-Propagation Neural Network
for Nonlinear Self-Tuning Adaptive Control",
IEEE Control System Mag., vol. 10, pp. 44-48,
Apr. 1990.

[15] J.G. Kuschewski, S. Hui and S.H. Zak,
"Application of Feedforward Neural Networks
to Dynamical System Identification and
Control", IEEE Trans. on Control Systems
Technology, vol. 1, No. 1, pp. 37-49, March
1993.

APPENDIX A
Derivation of Equations (1) and(2)

Considering Figure 1, the sum of the yaw moment
about the car c.g. yields:

a F,cosd; - b F cosd, - LW=I_1t (A1)

Summing the lateral forces along the body‘ y axis
results in: : ‘

F; cosd, + F cosd - W = M, (v + Ur) (A.2)
The lateral forces are approximated as:

Ft":C;zf &g s F1=Cut o, (A.3)
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where C and C_, are the cornering stiffness
coefficients for the two axles.

For small steering angles, cos §; = cos §, =1, and the
slip angles are defined as:

=0 - (v +ar) /U
@, =8 -(v-b)/U @
Substituting Equations (A.3) and (A.4) into
Equations (A.1) and (A.2) results in the following
equations of motion:
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Ii (32C¢f+bzcat) (acaf—bcar)
+ +
= v U Ay
-aC,8, -bC.8 -LW

(acaf_bcar)r + Caf+carv

M.y U
W MU U (A6)
=C¢f5f+car6r_w

Equations (A.5) and (A.6) are given in the text as
Equations (1) and (2), respectively.
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