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ABSTRACT

Free-surface flow past a submerged periodic bottom of different shapes is considered. The two-
dimensional flow is assumed to be steady, irrotational, inviscid and incompressible. Following the
method suggested by Thomson and Lamb the free-surface profile is obtained for the supercritical
and subcritical cases. The effect of the surface tension is taken into account for the two kinds of
flow. The parameters governing the flow such as the Froude number F, the periodic length L and
the shape of the bottom are discussed in both cases of the presence or absence of the surface tension.
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1. INTRODUCTION

Fluid flow over various bottom topographies has
attracted considerable - attention throughout the
history of fluid mechanics.

The fluid is assumed to be inviscid and
incompressible and the flow to be steady and
irrotational. In 1900, Wien [1] assumed a bottom of
the form

Y()=h + a cos (kx) (1.1)

where h is the upstream depth of uniform flow and
a is the amplitude of unevenness of the bottom. He
chose the origin in the undisturbed surface, and
supposed that the solution was a linear combination
of trigonometric functions, under the assumption
that the amplitude of unevenness of the bottom was
small compared with the depth of the uniform flow.
Eventually, he found that the shape of the free
surface 1s

a cos(kx)
tanh(kh)]

nx)= (1.2)

ku?

cosh(kh)[l g

in which u is the mean-stream velocity. An
interesting consequence is that the free-surface wave
and the bed wave are in phase or out of phase
according as u?/(g/k) is greater or less than tanh (kh
respectively. However, when u -(g/k) tanh (kh), the
theory fails and linearised theory can not be applied.
The flow takes one of two possible forms,
depending on the value of the upstream Froude
number F, which is the ratio of the phase speed of
the fluid infinitely far upstream to the speed at
which a small disturbance would travel in the fluid.
If F2<1, linearized theory predicts a region of
uniform flow far ahead of the obstruction, followed
by a train of downstream waves. When F?>1, a
wave-free solution is obtained, in which the fluid
surface simply rises over the obstacle, before
returning to the undisturbed level downstream.

In 1932, Lamb [2] presented a general lineralized
theory for flow over stream beds of arbitrary shape.
Lamb’s theory was reviewed by Wehausen and
Laitone [3] in 1960; they also discussed the free-
surface flow over a step discontinuity in the stream
bed.

In infinite depth, Kochin, Kiebel, and Rozen [4], in
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1964 treated the problem of a point vortex, a point
source, and a dipole moving beneath the free
surface, but the method does not work conveniently
in the case of finite depth. This is due to the
problems arising from the formulation of a new
boundary condition, namely the vanishing of the
normal component of velocity at the bottom. Mei [5]
in 1969, considered a linear solution of a steady free-
surface flow .over a wavy bed. He applied a
perturbation technique to a third-order
approximation and found that by carrying out a
higher-order analysis, the singularity will be removed
by the nonlinearity of the free-surface condition. In
1973, Gazdar [6] replaced the obstacle by an
equivalent system of singulanties. He was able to
clear away the difficulties faced by Kochin by
properly choosing the perturbation potential. Gazdar
found that for a value of the parameter gh/u2>1, the
wavelength of the wave does not change with
different obstacles, but the amplitude does. The
dependence of the amplitude on the different
shapes of obstacles leads to an interesting situation:
it has been observed that for certain shapes no wave-
like motion occurs even when gh>u2 a condition
where wave motion is always expected to take place.
Forbes [7], in 1981, investigated the flow over
submerged semielliptical body. In 1981, Abd-El-
Malek [8] treated the nonlinear problem of a flow
over a ramp by applying Hilbert’s transformation. In
1982, Forbes and Schwartz [9] considered a flow
over a semicircular body, and 1983, Forbes [10]
studied the effect of gravity and surface tension in
his previous work. Boutros, Abd-El-Malek, and
Masoud [11] in 1986, considered a flow over a
triangular obstruction at the bottom and studied the
effect of Froude number, bottom height, and slope
of the triangle sides.

Recently, a considerable amount of work has been
done by King and Bloor [12,13], Abd-El-Malek and
Hanna [14], Faltas, Hanna and Abd-El-Malek [15].

2. FORMULATION OF THE PROBLEM

Consider the steady, two-dimensional flow of an
ideal fluild in an infinite open channel with a
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nonuniform bottom, as shown in Figure (1).
The depth and speed of the flow far upstream
being A and u, respectively.

...... - h=1

TItTvLvvvvess

X

#M-l
()

Figure 1. Physical configuration of a flow over an
obstacle.

The surface tension of the fluid is 7 and g is the
downward acceleration due to gravity. In the
presence of surface tension a wave train may appear
upstream; in this case the reference speed, and
depth £ are defined at points of zero curvature of the
free surface upstream (the effect of surface tension
on fluid at this point vanishes).

Let the velocity potential be stream ¢ and the
stream function be ¥, so the bottom line is ¥ =-u
h and the free surface ¥=0.

Thus in the case of a simple harmonic corrugation
in the bed '

y=-h+ € cos kx, (2.1)

with wave number k and small amplitude e, the
origin being in the undisturbed surface, we assume

¢ = -x u + u(a cosh ky + b sinh ky) sin kx,(2.2)
and
¥ = -y u + u(a sinh ky + b cosh ky) cos kx(2.3)

where @ and b are constants to be determined. The
condition that (2.1) should be a stream-line is,

& = - a sinh kh + b cosh kh. 24
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At the free surface of the fluid y = 5, the pressure-
formula is given by,

%‘1 =const.-gn + Et; +ku?(acosh kn+b sinh kn)coskx

+0 (&) (2.5)
where p, is the atmospheric pressure, p is the

density of the fluid and R is the local radius of
curvature of the free-surface defined by

3
R =[1 +<%)2]2/(d2n/dx2) «l[d?rjdx?] (2.6)

At the free surface from (2.3) and under the
condition ¢ << 1 we get,

n = b cos kx 2.7

Hence the curvature is,

'116 = -bk?coskx (2.8)

From (2.5) and (2.8) we get,

Pe o const. -gb cos kx-(tb Kcos kx)/p
(Y

+ku? a cos kx+o(82). 2.9)
So the condition for a free surface gives,
kZ a-b(g + tk%p) = 0. (2.10)

The equations (2.4) and (2.10) determine a and b.
The profile of the free surface is given by,

e coskx 2.11)

2
coshkh-i[ui]sinhkh

ku? gp

n:

Introducing the dimensionless parameters of the
problem, namely, the Froude number F,

F2= u/gh (2.12)
and surface tension number,

T=t/ghp (2.13)
and introducing the dimensionless quantities,
k' =kh,n' =9/h, y' = y/h, x'=x/h, ¢'= ¢/h, (2.14)
we get from (2.11) the normalized shape of the free
surface. Having done so, we proceed to drop the
primes so that hence forward all variables will be
dimensionless.
Hence for the simple harmonic corrugation,

y=-1+¢ecoskx (2.15)

The free surface profile is

£ coskx (2.16)
g+ Tk?)sinhk
Fk

n =
cosh

This equation is invalid in the case k=0. It could
be shown that as k = 0,y = -1 + ¢and n > &.

The profile disregarding the influence of surface
tension can thus be deduced by putting T = 0 in
equation (2.16), namely,

= 006 EE 2.17)
coshi| 1 - ZaRE
Fk

3. EXAMPLES

We shall now consider two cases of bottom
irregularities. In each case the function representing
the bottom is first expanded in a Fourier series of
the form
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s(x) =% +Y" a, cos(nnx/L)

n=1

then the free surface profile 7 (x) is calculated
according to equation (2.16)

CASE (1)

The bottom shape function, Figure (2), is given by

~e(x+L-d)/d -L<x<-L+d
fx)= 0 -L+d<x<L-d| (3.1)
e(x-L+d)/d L-d<x<L
Y

Figure 2. Bottom profile of case 1: (d#L).
where f (x+2L) = f (x). The expansion of f (x) is
s(x)=ed[2L +

2el
a1 ninid

[ cosnm -cos(nm(L-d)/L)] 008(1?)

and the free - surface profile is

nx)=ed/2L+

2el

n-1 n®n2d

[cosnm -cos(nm(L-d)/L)]

cosmtx
L
2.2 2
cosh 2 ~ainh 220 1+ T/ (P )

The results are illustrated in Figures (4),(5),(6) and

.

A special interesting case is that when L = d. The
bottom shape function has then the form, Figure (3),

-ex/L -L<x<0
fx)= 3.2)
ex/L o<x<L
Y
A
X
Lo d

Figure 3. Bottom profile of case 1: (d=L).

where f (x+2L) = f(x). The expansion of f (x) is

2e nwx
i (cosnm - 1)]cos(T)

and the free- surface profile is

s(x)=s/2+2.:

n=1

2
#l

"2 (cosnm -1)‘
T

n@=e/2+)
"'n=1

nmwx

L

Tn’nz)/(ann)
L? L

hﬂ- mhﬂ 1+
cos T (s L)(
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Figure 4. Effect of Froude number F on the free surface above
ascending part of the irregularity. Case 1: (L=60, d=30, T=0, e=.1).
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Figure 5. Effect of Froude number F on the free surface above

ascending part of the irregularity. Case 1: (L=60, d=30, T=0,e=.1).

0.06
J N
0.0
Q — F=0.75
|
g 005 ____________ __,’\ _—le F=0.70
5 -.- F=0.65
g C.C5 - _ — F=0.60
& ——~
0.04 - S
0.04 - "
0.03 ———
0 10 20 30

Figure 6. Effect of Froude number F on the free surface in the
region between two humps. Case 1: (L=60, d=30, T=0,e=.1).
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Figure 7. Effect of the periodic length L on the free surface in the
region between two humps. Case 1: (d=L/2. T=0, F=0.6, e=0.1).

CASE (2)

The bottom shape function is of the form, Figure

@

0 -L<x<-d
f&x)=le(1+cos(nxfd))/2 -d<x<d| (3.3)
0 d<x<L
Y
)
L.
.

Figure 8. Bottom profile of case 2: (d"L).
where f (x+2L) = fi{x). The expansion of f (x) is

ed

s)ed|2L+3 | sin(urd| L) + sl

n=1
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sin(x (nd-L)fL) +—29

mSiﬂ(ﬂ (n d+L)/L) )

cos(nmx/L).

The corresponding free-surface profile is

B N o & ed
n(x)=ed/2L ,; nnsm(nnd/L)+__—21t(nd—L)
’ ed .
Sm(ﬂ(nd L)IL) msm(n(nd+L)[L) .
nnx
L
n% .. RN Tn%z?, , F’nn
COShT_(sth)(1+ 2 )/( 3 )

The results are illustrated in Figures (9) through
(16). '

SUMMARY AND DISCUSSION

The steady, two-dimensional free surface flow of
an inviscid incompressible and irrotational fluid over
a periodic irregular bottom has been investigated.
The free surface profile is obtained, for supercrtical
and subcritical cases in the presence of surface
tension. T'wo cases are considered, first the flow over
irregular bottom of periodic triangular form and
second the flow over a periodic smooth irregular
bottom.
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Figure 9. Effect of Froude number F on the free surface above ascending
part of the irregularity. Case 2: (=60, d=30, T=0,e=0.1).
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Figure 10. Effect of Froude number F on the free surface above of the
irregularity. Case 2: (L=60, d=30, T=0,e=0.1).
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Figure 11. Effect of Froude number F on the free surface in the region
between two humps. Case 2: (LL=60, d=30, T=0,e=.1).
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Figure 12. Effect of the surface tension T on the free surface in the region
between two humps. Case 2. (=60, d=30, F=0.6, ¢=0.1).
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Figure 13. Effect of the surface tension T on the free surface just
above the irregularity. Case 2: (L=60, d=30, F=2.0, e=0.1).
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Figure 14. Effect of surface tension T on the free surface just above the
irregularity. Case 2: (=60, d=30, F=0.6,e=0.1).
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Figure 15. Effect of the periodic length L. on the free surface above
descending part of the irregularity. Case 2: (d=L/2, T=0,F=0.6, €=0.1).
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Figure 16. Effect of periodic length L on the free surface above descending
part of the irregularity. Case 2: (D=L/2, T=0, F=3, €=0.1).

The free surface response to this bottom
topography is discussed and the solution is derived
under the assumption that the height of the
irregularities is small compared to the channel depth.
Two different ty;Z)es of response are detected for
subcritical flow (F“<1) and supercritical flow (F2>1).

Effect of Froude number F: For the subcritical
flow it is found that a disturbance with depression
appears immediately above the triangles in the first
case and above the repeated bottom irregularity in
the second case.

A small regular wave train with very small
amplitude is generated in the region between two
humps. Moreover, we observe that the depression of
the wave increases, in magnitude, with the increase

of Froude number.

Conversely, in the case of supercritical flow the
free surface is in phase with the bottom
configuration. The amplitude of the local
disturbance above the summit of repeated triangles
in the first case and above the summit of repeated
irregular bottom in the second case decreases, in
magnitude, with the increase of F.

The limiting form of the free surface profile for
supercritical flow (F—o0) would have the same shape
of the bottom which is in good agreement with the
conjecture made by Forbes and Schwartz [9].

Effect of the surface tension T: It appears that the
effect of the surface tension is very small and mainly
affects the free surface when the radius of curvature
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is small.

For (F%<1) the amplitude decreases with the
increase of T, Conversely, for (F2>1) the height of
the free surface increases with the increase of T.

Effect of the periodic length L: As L decreases,
the amplitude of the waves in the free surface
profile above the region between two humps
increases and consequently the wave length of these
waves decreases.
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