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ABSTRACT

A procedure for solving linear symmetric tridiagonal Toeplitz systems is presented. Without inverting the
coefficient matrix, an efficient way to find the solution is obtained by transforming the system into
another one which permits the application of Woodbury formula. The proposed method possesses very
good stability and is quite competitive with Gaussian elimination and with the modified double sweep

method [4].
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1. INTRODUCTION

Real symmetric Toeplitz matrices arise frequently
from many sources and play an important role in many
problems in system theory and signal processing [1,2].
The solution of a linear system of equations having a
Toeplitz coefficient matrix is a very common problem
in practice. Applied to general Toeplitz systems,
current fast and superfast solvers are numerically
unstable [7]. For some of superfast Toeplitz solvers,
stability can be expected for positive definite matrices.

Circulant matrices form a special subclass of Toeplitz
matrices. Linear systems of equations involving
circulant coefficient- matrices appear in many
applications [4]. In particular they occur in finite
difference solution of one-dimensional elliptic equation
subject to periodic boundary conditions [4,5]. For
example, the finite diference approximate solution of
elliptic equations over a rectangle with periodic
boundary conditions yields to the solution of linear
system of equations with symmetric circulant
tridiagonal  coefficient matrix [5]. Symmetric
tridiagonal circulant linear systems are always solved
using the Gaussian elimination and the modified double
sweep method [3,4]. In this paper, we suggest a

proposal to solve such a system by transformation into ‘

another system applicable to Woodbury formula [6].
Consider the following special class of Toeplitz
matrices

ao al a2 au-l
an-l ao al an—z

A=la,, a,, a, .. a4 (1.1
i al (12 03 . a,

which are called circulant matrices. This type of
matrices are completely defined by their first row, and
thus frequently denoted by

A =circ(a ,a,,8,,...,8, ) (1.2)

An nXn real symmetric circulant tridiagonal matrix §
is a matrix of the form

S = circ(a,,a,0,0,...,4)

(@, a 0 .. ... 0 al

a a,a 0 . 00

OaaoaO...O
= ',a#O
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In this paper, we assume that the matrix S is strictly
diagonally dominant, that is

la,| > 2|a| (1.3)
The following section is devoted to solve the linear
system

Sx=f (1.4)

where x and f are the unknowns and data vector,
respectively.
The algorithmic procedure and stability discussion are
given in section 3.

2. THE PROPOSED METHOD

It is easy to see that the system (1.4) is equivalent to
the system

Ax=b 2.1
where
[« -1 0 .. .. -1]
-1 « -1 0 ... O
0 -1 « -1 ... O
A = )
0 O a -1
-1 e e e -1 @
b=-fla, « =-a,a (2.2)
[ @ =1
-1 a -1 0 0
4 _1
o
0 « -1 0
L —1 [+4 ] 1
with || > 2.

The condition (1.3) implies that |« |>2.2.1.
Transformation of the system

An appropriate partition of the system (2.1) to
eliminate the last unknown x,, leads to a system which
can be solved using the Woodbury formula. The
system (2.1) can be partitioned into

@ -1 0 .. .. 0][x] [1] [&]

-1 & -1 .. .. Ofix 0 b,

P AE - -x| = |ed

0 0 g -1 0

0 —1 o an—] ! 1 J {_bll-l
-
%

(10 ..01] *|+ax,=b,, @4

Fn-1]

Combining (2.3) and (2.4) by premultiplying (2.4) by

111 0 .. 0 1] and adding the result to (2.3), this
o ‘
yields to

x b,+b,|

X b,

R R @.5)
xn-2 bn-2
y xx—l bu-l + bn/a_

By this partitioning, a symmetric tridiagonal matrix is revealed. To make use of Woodbury formula in the
solution, we first change the first element of the tridiagonal symmetric matrix into 8 and solve the system

Bx =

where

D 84

b (2.6)
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[
B -1
—1 o —l 0
B =
0 a -1
-1 «
and
1 o o’-4

= +— ) = 2.7
a = B e 2.7)

It should be noticed that both of the vectorsx and b
are (n-1)- vectors, that is

¥=[x,%,,..,%,_)Tandb=[b +b [a b,,..,b, , + b o] .

(2.8)
The matrix B is of the form
B=C+PQT (2.9)
where
B -1
"1 o _'1 0
C = )
0 a -1
-1 «
1 _1]
o
- dQT—lo‘ 00 2.10)
B an 10..01)" 7
o -1
L a‘

and C, P and Q are (n-1) X (n-1), (n-1)X2 and (n-1) X2
matrices respectively.

TEEt
B «
(I
10 ... .. 00
[10 ...... 01]’
(O
o =L
aJ

Thus applying the Woodbury formula [6],we get
B'=ct'+Cc'P, +QTc'PH QTC! 2.11)

and the solution of the system (2.5) is that of the
system (2.6), that is

¥=B'b=Cb+C'P(I, + QTC'P)" QTC'b

2.12)
or
x=y+DFQTy (2.13)
where
y=C7%5,D=C'pandF=(I,+Q7C'P)"  (2.14)

and y, D and F are (n-1)x1, (n-1)X2 and 2Xx2
matrices respectively.

2.2 Computation of y

Consider the system
Cy=b 2.15)
The matrix C is defined in (2.10) and the vector b is
defined in (2.8). It is easy to see that the matrix C
admits the LU factorization, i.e. C = LU, where

1 B -1 ]
-1/ 1 0 B -1
L= , U= (2.16)
0 0 1
-1/8 1] B |
D85
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B=2 ¢

oy PL
BB,

With this factorization, the system (2.15) decomposes
into two triangular systems

Lz=I;,
Uy =2z

@2.17)
2.18)

where L and U are given in (2.16).
System (2.17) can be solved by forward substitution to
obtain

2y =Dy +2/B=b,, +2/B,i=1,2,..,n-3;  (2.19)

+2, /B = b, +b e +2,,/B

L1 T bu
and system (2.18) by back substitution to get

yn—l = ;uT]/ﬁ H)
Vn-i-1 T (2o + yn—i)/B Ai=1.2,..,n-2 (2.20)

From (2.19) and (2.20), -c1p

reveals.

the vectory

2.3 Computation of D and F

To compute the matrices D and F defined in (2. 14)
we need the first and last column of the matrix C
The first column of C !, can be found by use of the
recursion formulae (2.19) and (2.20) with

b1=1md52=53="-=b-n-1=

The last column of the matrix C */ can also be
computed using the same recursion formulae (2.19) and
(2.20) with

by=by=by,=..=b_,=0and b, , = 1.
Thenweg
D 86

BZ(n—l) -1 1 [
(BZ_I)BZI'-S pn—l
BZ(n-2)_1 1
(B2-1)p2 pr
c1- ' @.21)
' pZ(n -i)_ 1

(BZ_I)BZ(::-I)-I' Bn-i

1 1
L

Using the equality 1. P - which comes from
[ ;

B +
(2.7), and from (2.21), we can obtain the 2x2 matrix

F=(,+0"C!pyL.
It takes the form
1 pr2-2p" - p? BB 2 +1)

Fooms (2.22)
(B2-1)(B"-D[-(B*+1)(B"?+1) (B*+1)(B"+1)

The (n-1)x2 matrix D=C -Ip is, similarly, obtained
and takes the form

1 g1 B 1, Pk
p(p2-1) p>* B+l prt PRRE-1)
1 pz(u—z)_l _p [ 1 R p2(u—2)_1
B(p2-1) p>*  p2+1 pr2 pRHPE-1)
D- 5 2.23)
1 g1 B preo-1

B(p2-1) pHDi  pier p"‘ ﬂ“"""(ﬂ’-l)]
1 B i, 1.
ﬂ" p2 * 1[ ﬂ pu-l]

2.4 Computation of oYy

Before writing the final expression for the solutionx
of the system (2.6), we get the vector QTy as
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y 2 Step 5: Compute
2y = (2.24) n-1 2_1 i2 , @i
Y1 Vna H=%Y o : 2 pn—l‘ 1t P ng In
ggd'l)(ﬁ -1) B p

3. ALGORITHM FOR SOLVING THE ORIGINAL _

SYSTEM X, = (by+x;+x, )

. . Output
Using equations (2.22)-(2.24), we finally get the x;, i=1,2,...,n

solution x of the system (2.5) as
3.2 Stability Discussion

; =y + p.~l fpz-l + pl‘2+p(l-2)-l '_1’2 l ., .
Y oD g N = Vo1l si=1,2,....n- From (2.19) and (2.20), it is easy to see that
3.1
Th i i e
e solution x of the system (2.1) is then B = * ., |& 4 if « >0, and
a 2 N\ 4
x,=x ,i=1,2,..,n-1 2_
3.2) B=§—\“44 if @ <0

x, =0, +x +x, )
because we then have |B| > 1 and numerical stability
3.1 Algorithm for the solution of the original system of the process of solving equation (2.7) follows. Also,
(1.4) we can observe that the power of 1/8 should be
computed recursively for increasing values of i to

In the following, an algorithmic procedure to solve  assure numerical stability.
the system Sx=f£ is presented. Finally, only a few words of memory are needed for
the vectors b, y, and z because each element of these

Input: S = circ (a,, a, 0,0, ..., a) and f vectors is used once and needs not to be saved.
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