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ABSTRACT

In the present study, the problem of the plane pendulum with a rapidly circular moving point of
suspension has been considered. The study is made for arbitrary angular displacements of the
pendulum. By applying a Kapitza type transformation, the canonical equations have been reduced to
an autonomous system of differential equations. A general solution of this autonomous system has been
obtained in terms of elliptic functions.
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1- INTRODUCTION

Pendulums with oscillating base motions have been the natural frequency of the pendulum under the
the subject of many investigations. Stephenson [1] influence of gravity.
considered the plane pendulum subjected to a
vertical oscillation. He presented an explanation of  2- HAMILTONIAN CANONICAL EQUATIONS
the inverted position. Lowenstern [2] investigated —
the spherical pendulum with an oscillating base. -~ ®
Phelps and Hunter [3] presented a thorough study of / \
the plane pendulum subjected to a vertical / 0 a )
oscillation at an unrestricted frequency. Miles [4] ( I
considered the stability of the downward vertical
position of the spherical pendulum subjected to a AN
horizontal oscillation. Ryland and Meirovitch [5] -4 -
considered stability of the vertical position of the
plane flexible pendulum with a vertical harmonic !
oscillation at an unrestricted frequency. Schmidt
[6,7,8] presented variations of pendulum with ‘ ’
oscillating base motion. Kapitza [9] studied the plane ‘ I
I
l

ndulum when the support is excited vertically
with high frequency and the angular displacement of
the pendulum is arbitrary. Habieb [10] treated the
case of a pendulum when its base is vibrating
horizontally at a rapid rate. Several authors have
investigated the plane pendulum subjected to non- _
harmonic oscillations. In this paper, we consider the B
motion of a pendulum with a moving support

orbiting a circle. Here the pivot is describing a circle ' y
with a small radius that moves with a high angular

velocity. This angular velocity is large compared to Figure 1.
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Let us consider the plane pendulum shown in the
annexed Figure (1) that consists of a particle (B) of
unit mass connected with a massless rigid rod (AB)
of length (L). The point of suspension (A) moves in
a circle, of center (O) and radius (a) with a constant
angular velocity (). The radius (a) 1s small
compared with the pendulum length (L) and (@) 1s
very large compared with the natural frequency of
the pendulum under the influence of gravity. If (¢)
is the angular displacement of the pendulum at any
instant (t), then the kinetic energy (T) takes the
form:

_12.déby | _ dé, 1 522
T 2L (dt) aLQcos(Qt-¢).( s )+2a Q°.(1)

The potential energy (V)-taking as a reference
level the horizontal plane passing through the centre
(O) - is given by:

V=-g{acos Qu+ L cos ¢}. 2)

Defining the fast (dimensionless) time (7) by 7 = Qt

and introducing the following constants €=

L ‘/_ , equations (1), (2) may be rewritten as

T=°2L2{d>’+2ecos(r—¢).<i>+e2}, 3)

V = - Q%1% N? {é*cost +€2cos ). 4)

in which the dot denotes differentiation with
respect to the fast time (7). Then the Lagrangian

() of the system is :

9=T-V= QZL2{<§2+2eoos(r -$).¢+€}

+ Q2 L% )2 {€?cos ¢ +€* cos 7). (5)

The conjugate momentum () associated with the
angular displacement (¢) is:
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$=a—3=nzL2{¢+em(t ~9)).

<

Now, we construct the Hamiltonian

H(¢,$,t) of the system as:

H= é¢-T" +V,

where T is the modified kinetic energy
defined by [11]

in which F is an arbitrary function.

L? {€1 -2esin(t -¢)},

Let F =
then differentiating (9) with respect to (t) giv

2y 2 o
dF =Q£=ﬂ‘—{ez—2€cos(t -¢) +2edcos(t -9)}.
dt de 2

Substituting (3), (10) into (8) we obtain

. 212 .
T = 02L {¢2+2€cos(1:~¢)}

and substituting in (7) we obtain

e _

H = H, - eH,-€*H, -€*H,,
where
&’2
°~ 2ol
20Q%L

H, = Q*L%cos(t - ¢),

QL

Hy = LL feos?(c -9) +212c080),

H; = 0% L2 N cos 7.

Invoking Hamiltons canonical eq
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i 0H . OH
9= [12],
o’ 3¢}

¥e get the equations of motion

d¢ _4 - ¢ 14-
de ¢ Eh (14-a)
98 _ 5 0?12 fsin(c - ) - € M2sind
T
~ +esin(t -¢)cos(t -P)}. (14-b)

THE NONLINEAR SYSTEM BEHAVIOUR

for the determination of the solution of equations
4-a,b) we introduce the new variables 6(7) and ¥(7)
the following manner:

¢ =6 - € sin (7-0), (15-a)

¢ =€{¥ -cos(t -0)}. (15-b)
he transformation (15) is motivated by ideas due
Kapitza [9]. Substituting Equations (15) in
uations (14) and retaining terms of the lowest
ler of magnitude in € lead to

40 p-cw, (16-a)
drt
‘(‘l—T =¥ = ¢{Tsin(t -6) - A%sinB}. (16-b)
X

W, applying the method of averaging [14,15] for
ations (16-a,b) postulate the following
nomous system of differential equations

(<=1}
Il
m
]

(17-a)

a3

a¥

de (17-b)

= e AZsind.

Integrate equations (17-a,b), we notice that

A0 e B (18)
dy  2%sin0
This leads to
92 -222c0s0 =const. =C (19)

in which the constant (C) depends on the inital
conditions of the motion.
Substituting equation (19) into equation (17-a) we
obtain

déz 2 2 = 212 |C+22% .26

22 =2(C +2 A%cosB) =4 €2 \“ { === -sin®? —}. (20)
( dr) ( ) e 5

For the solution of equation (20) there are three
cases:

(3-a) First Case:

V.50

B(t)
o o.1 .2 0.3 O.‘to.ﬂ o. N ” B
Figure 2.
2 (&)
B =k12<1 or < —2 lz,
4 2% e \C
then 2erc=f LW (21-a)
K’ _sin?®
\ 2

and the corresponding solution is

6 =2sin"!{k; sn(eA 7). (21-b)
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A plot of this value (6) versus (t) is given by Figure
(2) at k;=0.05 and L=100 cm.

(3-b) Second Case:

vl I S &
Figure 3.
k2<1 orfl> —° I
=K, <1 orni> —
C +2,\.2 €
hah 2eAT f (22-2)
K 2. 4B
1-k, sin®?—
and the corresponding solution is
(22-b)

0=2sin! sn(ext)}.
e

A plot of this value (8) versus (t) is given by Figure
(3) at k,=0.1 and L=100 cm.

(3-¢) Third Case:

3.850

3.00 —

2.50

2. 00 -

ORSS

1.00

o.so /-

o.00 T T T T T T T T T T v
0 0.20.40.60.8 1 1.21 .41 .81.8 2 22242628 3

Figure 4.
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then

2 ®
Ci24 =k32=1 or} =—° —%;
4?2 € \JC

Zelr=fSec—g—d5 (23:

and the corresponding solution is

0=4tan'(e**) -x. 23

A plot of this value (5) versus (t) is given by Fig
(4) at L=100 cm.
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