STRACT

rings fuzzy prime ideals are fuzzy maximal .

and minimal conditions .

1. INTRODUCTION

In what follows, R will denote a ring with identity
1. Modules over R will be denoted by capital letters
‘A, B, C, M. Their fuzzy submodules will be denoted
by capital italic letters 4, B, C, M respectively.
Recall, a fuzzy submodule A of A is a fuzzy subset of
A which satisfies foralla,b ¢ A and o, 8 ¢ R:

(S1) A(aa + b) = A(a) A B(b),
S2) AW =1.

Let X be any set and let y & 1X. The support
subset of X, denoted by X is defined to be:

f-{x:xeA,i(x)>0} (1)

It is well known that if A is a fuzzy submodule of A,

then A is a submodule of A.

Zadeh’s extension principle, [7], is applied to the
two operations of A to get another two operations on
the set of all fuzzy subsets of A (I%). These new two
operations are denoted by + and juxtaposition as
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well and defined as follows: for all 4, B ¢ 1A and for
everyx ¢ Rand a ¢ A let

(A + B)(a) = sup {AX) A B(y: x +y=a}, (2)

up{A(x) :xeA, ax=a} if a0,
(ad) (a) = 1 if @=0,a=0, 3)
0 if «=0,a+0.

Then, if Ay, A;,.., A, € A we get the sum:

(A; + Ay +.+ A )a) = sup{d(x;) N A(x;) NAA(X):

2 x=a).

If all 4;’s are fuzzy submodules of A then so is their
sum, see [2].

A function f A - B is extended to f: IA —» IB,

where f is defined as follows: for all A ¢ I*and b &
B let
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FAD) =sup {AX):x e A, fx)=b} (@)

If B ¢ IB; define £ (B) to be the fuzzy subset of A
defined by; for all a ¢ A let

7 (B)a) = B( f(a)) )
2. FUZZY HOMOMORPHISMS

An R-module homomorphism f from A into B is

called a fuzzy homomorphism from A into B if f (4)c
B. It is denoted by f: A - B. See Definitions 3.3.1
and 7.2.1 of [4]. In these definitions, our fuzzy
homomorphisms are called weak fuzzy homom-
orphisms. If f: 4B is a fuzzy homom-orphism, we

call f(A) a fuzzy homomorphic image of A or simply

a fuzzy homomorphic image. This f(A4) is a fuzzy
submodule of B, [4]. Hom (A,B) will denote the
abelian group of all R-module homomorphisms from
A into B and Hom (A4, B) will denote the subset of
all fuzzy homomorphisms A into B.

Lemma 2.1 Let £ A - B be a fuzzy
homomorphism. Then f (JI)CE

Proof Leta €A then;

B(f(a)) = f(4)f(a)) = sup {A(X): x € A, f(x)= f(a)}
= A(a) > 0.

Proposition 2.2 Hom (A, B) is a subgroup of Hom
(A,B).

Proof Letf, g e Hom (4,B). Then it is enough to
prove f - g e Hom (4, B). For all x ¢ A we have:

B (f(x)) = T (A)(f(x))=sup{A(a):aeA,f(a) = f(x)}> A(x).
Similarly B (g(x)) = A(x). Let h = f - g, then for all
b ¢ B we get

h (A)b) = sup {A(a): a € A, h(a) = b}
< sup {B (f(a)) N B( g(a)) : a € A, h(a) = b}
< sup {B (f(a) - g(a) ): a € A, h(a) = b}
= sup {B( h(a)) : a € A, h(a) = b} = B(b).
Hence h = f - g ¢ Hom (4, B).
By Lemma 2.1 , the restriction of f (as an

R-module homomorphism) to Aisa homomorphism
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from A into B and is denoted by f as well .

Definition 2.3 Let X be a subset of A and
0<a<1 define a, € IA as follows ; for all x e Al

1 if xeX,
2x(x) ’{o if x ¢X.

If X is a singleton {x} then a will be denoted ;
in this case a is called a fuzzy point . Define <a
by; for all y € A let

if y=ax#0,aeR,
if y=0 :
otherwise.

<a,>(y) = 11

It is straightforward to prove (see [3] and [4]}

Lemma 2.4 < a,> is the smallest fuzzy submodi
A containing a,. It is called the fuzzy subme
generated by a,. '

Lemma 2.5 Let f : A B be an R-m

homomorphism, and let x € A. Then f(<ax>) :
where f(x) = y. [

Proof Letz e B and z = ay for some a e R
f (<a,>) (2) = sup {<a,> (u): u € A, f(u) = ayr

Also we have:

f (<a,>) (0) = sup {<a,> (u): u € A, f(u) = O} =
Suppose z € B such that z # ay for all @ ¢ R;

f (<a,> (z) = sup {<a>(u): u € A, f(u) = z} =0,
otherwise we can find 8 € R such that f(fX
which contradicts the assumption of z

A fuzzy submodule A is said to be fuzzy fi
generated if there are 0 < al, 2%, a" < 14
X,y X, € A such that:

A= <a"‘> i <azx2> + .. + <at

see [4] , [5]. Then for all x € A we get:
AX) =sup{min(@):1 < < n,x-Eaj,\
eR} ‘
Hence A(x) > 0 if and only if x is a



combination of the x ’s. So, A is finitely generated
by {x;} as an R—module The i lmage of A in I is the

ﬁmte set {al ,.. »a"tand A(x)) 2 a'forall 1 <i < n.
Also we have for each X;

(<al >+ ..+ <a”x_>) (xp) = al 7)

' Lemma 2.6 Fuzzy homomorphic images of fuzzy
finitely generated fuzzy submodules are also fuzzy
finitely generated .

- Proof Let f : A»B be a fuzzy homomorphism and
let;
{ = <a'xl> + . +<a

n&>' Then by Theorem 7.1.2
of [4] we get:

j (<a1xl>+...+ <a"x.>) = ?(<a‘x >) + ...+ f(<a® >)

¥

- .
=<a, >+ <a’ >, where f(x) =y, i=1,., n.

: 8

Remark 2.7 If p is a fuzzy subset of A, the
intersection of all fuzzy submodules of A that
contain p is also a fuzzy submodule of A. It is the
smallest fuzzy submodule of A containing p; called
the fuzzy submodule of A generated by u and
denoted by <u>. Theorem 7.3.2 of [ 4 ] reads ; for
all x e A we get:

E-) 1 if x =0,
2 “\up (min(u():x=Y" a,x,@,cR]  ifx=0.

If p is a finite subset of A, <u> is said to be a
finitely generated fuzzy submodule of A, see
Definition 73.1 of [ 4 ]. If we put p = {x;, X5 we}
and pu(x;) = a', this definition of finitely generated
fuzzy submodule agrees with our previous definition
of fuzzy finitely generated fuzzy submodule .

3. FUZZY CHAIN CONDITIONS

A fuzzy submodule 4 of an R-module A is said to
be a finite fuzzy submodule if the image of the
membership function of 4 in I is finite i.e. the
cardinality of A(A), |A(A)|, is finite. Then any
submodule of A is a finite fuzzy submodule because
the image of its membership function has cardinality
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2 orl.
A set of increasing finite fuzzy submodules of an

- R-module A;

A S A, S A4; ... 8)
is said to satisfy the finite fuzzy ascending chain
condition ( f.f.a.c.c. for short ) if there is an integer
n such that Zn =.Zm foralm = n.

A set of decreasing finite fuzzy submodules of an
R-module A;

A DA, D Ay )

is said to satisfy the finite fuzzy descending chain
condition (f.f.d.c.c. for short) if there is an integer n
such that Zn =X.. for all m = n.

A set of finite fuzzy submodules {4, 4,, ... } of an
R-module A is said to satisfy the finite fuzzy
maximal (minimal) condition if it has a fuzzy
submodule A, such that if 4 is another fuzzy
submodule that satisfies 4; € 4, (4, S 4,) then we

must have IO =Zn.
Example 3.1 Let A be the module of even integers
over the ring of integers. For any 0 # x e A, let k,

be the natural number such that2" is greatest even

divisor of x ie. x = 2% (q) , where q is an odd
integer. For any natural number n , define a fuzzy
subset A, of A as follows; for all x € A let

1
25

1 if x=0.

1- if x =0,

4, x) =

Then we get an ascending sequence of fuzzy
submodules

Ay S 4; € 4; S....

The image of the membership function of each 4;

(i= 1, 2,.) is infinite, and A4;=A. Although A, are
finitely generated as R-modules and A is a
Noetherian module, no one of the A;’s is a fuzzy
finitely generated fuzzy submodule of A .

Exdmple 3.2 Letk be afield , the polynomial ring

- D75
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k[x;, X,.] in a countably infinite number of
indeterminates satisfies neither chain conditions on
ideals . Let A; be the ideal generated by x,, x,,..., X;
and for each i define a fuzzy submodule A, of A, that
takes 1 at 0 and 1 / 2 otherwise. Then each A, is a
finite fuzzy submodule which is finitely generated
but does not satisfy the f.fa.c.c. .

Theorem 3.3 For any R-module A, the following
conditions are equivalent
1) Every finite fuzzy

generated.

2) Every set of increasing finite fuzzy submodules
satisfies the finite fuzzy ascending chain
condition.

3) Every non-empty set of finite fuzzy submodules
satisfies the finite fuzzy maximal condition .

submodule 1s finitely

Proof See Theorem 3.5 of [5] , see also [4].

Theorem 3.4 For any R-module A, the following
conditions are equivalent :

1) Every set of decreasing finite fuzzy submodules
satisfies the finite fuzzy descending chain
condition.

2) Every non-empty set of finite fuzzy submodules
satisfies the finite fuzzy minimal condition .

Proof

1) =@

Let § be a non-empty set of finite fuzzy submodules
and let A4 € S.If A does not satisfy the finite fuzzy
minimal condition, then there is A; such that 4 2
A; with A #.Zl we continue with this procedure till
it stops by the f.f.d.c.c.

) -1

For the decreasing set of finite fuzzy submodules
A2A,0....... , the set § = {4,, 4,, ...
the finite fuzzy minimal condition.

} must satisfy

Definition 3.5 We shall say that an R-module A is
fuzzy Noetherian (respectively fuzzy Artinian) if it
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satisfies any one of the conditions of Theo
respectively Theorem 3.4).

Proposition 3.6 Let A be a fuzzy N
module . Then every submodule and eve
module of A is fuzzy Noetherian.

Proof Let B be a submodule of A, thene 7
submodule of B is also a fuzzy submod
which is fuzzy finitely generated. Now, con
factor module A / B, let f: A»A/B be the¢
homomorphism. Let B be a finite fuzzy subs

of A/B. We claim that £ (B) is also a ini
submodule of A. Leta,be Aand a,b ek
£(B) (aa + Bb) = B( f(aa + b)) =B (af(a)
> B(f(a)) A B( f(b)) =f"'B)a)* T (B)b
shows that ?"I(B) is a fuzzy submodule of |
(5) we see that £ (BXA) S B(A/B); this co
the proof of the claim. Our second claim is'
A =1"(B) then f(4) = B. Let a ¢ A then
= B)(@)> 0, so f(a) ¢ B. 1

On the other hand let x + B ¢ B for some X €.

0 < B (x + B) = B (f(x)) = " (B)(x) hence x¢.
C;, € C <S.. be an increasing finite

submodules of A/B. For each i let 4; = )
we get an increasing finite fuzzy submodules

A S Ay S..

m 2 n. Therefore by the second claim; C,=(
all m=n.

Proposition 3.7 Let B be a submodule |
Assume that B and A / B are fuzzy n_
Then A is fuzzy Noetherian.

then there is n such that Zn =A 3

Proof Let A; S A, be fuzzy submodules of A
i=1, 2 define C; = 4, N B. Let f: A - A/B be

canonical homomorphism, for 1 = 1, 2 de

Di-f (A;+ B). Then we get C; € G #
submodules of B and D; & D, fuzzy submodul

A/B. We claim that if C,=C, and D,=D, |
A =4,. |
Letxe Kz then
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(x + B) = f (4, + B) (x + B)

sup {(4, + B)a): f(a) = x + B}

sup {(4, + B)a):a+ B=x+B}

up {sup {4, (u) A B(v): u + v = a }: a+B=x+B}
sup {sup {4, (u) : veBu+v=ak a+B=x+B}=
p{dy(w):veB,u+v+B=x+B}

up {d, (w):u+B=x+B}

up {4, (u):x-ueB} 24, x>0

ien X + B eD-2 ‘51' So D; (x + B)> 0. Then as
fore; 0 < Dy (x + B ) = sup {4; (u) : x - u e B).
lis means; there is z € A such that 4; (z)> 0 and x
e B. Then z ¢ ;l cxz,

Ze€ Xz also x € ;1-2 thenx-ze Xz- So we have: C,
-z)=A, (x-2) NB(x-2)=A4;(x-2) > 0. So;

Z€ EfEl ,0Ci(x-2)>0.

hen A, (x-z)AB(x-2)>0.50 4, (x-2)>0
dx -z e;l, also z ¢ ,:1-1 SO X € Xl and the claim is
oved. Let A, S A, S A; S ...be an increasing
te fuzzy submodules of A . Then we get the two
quences of increasing finite fuzzy submodules ; C,
C, € C S ...and D;E D, € D; S....., of A
id A/B respectively, then there is n big enough

ch that 5n=5n and 5:::5»- for all m = n. Then

j the claim; A, =A_ for all m > n.
Now, we arrive at our main result in this section.

Theorem 3.8 Let 0 - A-»B— C— 0 be a short exact
quence of R-modules Then A is fuzzy
oetherian if and only if both B and A / B are fuzzy
oetherian.

orollary 3.9 Let A, ... A, be fuzzy Noetherian
modules, then A; ©..DAis also fuzzy

oetherian.

Proof We Apply induction to the exact sequence
A A D.OA A D.ODA -0
orollary 3.10 If one of two isomorphic R-modules
fuzzy Noetherian (respectively fuzzy Artinian),

en the other is also fuzzy Noetherian ( respectively
rtinian).
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Corollary 3.11 Let f : A»B be an R-module
epimorphism. If A is fuzzy Noetherian (respectively
fuzzy Artnian) then so is B.

Proof If we factor A by the kernel of f; we get a
quotient- module of A which is isomorphic to B.
4. FUZZY NOETHERIAN AND ARTINIAN
RINGS

A fuzzy subset I of a ring R is said to be a fuzzy
ideal if it satisfies foralla,be R ;
(I1)Ka+b) = Ia) N Kb),
(I2)I(ab) = Ka) v Ib),
I 3) K0) = 1.

So if we consider R as a module over itself, then
any fuzzy ideal of R may be considered as a fuzzy
submodule of R.

A ring is said to be a fuzzy Noetherian ring
(respectively a fuzzy Artinian ring ) if finite fuzzy
ideals satisfy one of the equivalent conditions of
Theorem 3.3 ( respectively Theorem 3.4) .

Proposition 4.1 If R is a fuzzy Noetherian ring and
f is a ring epimorphism of R onto R’ then R’ is also
Noetheran.

For every 0 < t < 1, the t-level subset of a fuzzy
ideal 7, denoted by [, is defined to be;

It={x:xeR,I(x)2t} (10)

Then I is a fuzzy ideal in R if and only if I, is an
ideal in R for every 0 < t < 1. See [4]. A fuzzy
ideal I is said to be a fuzzy prime ideal (respectively
fuzzy maximal ideal) if and only if I; is a prime
(respectively maximal ) ideal in R and there is s
(0 <s<1) such that

1 if xel
I(x) =
oth

erwise

See Theorem 5.2 of [ 6 ] and sections 6.5 and 6.7 of
[4].

Proposition 4.2 Let R be a fuzzy Artinian ring,
then every fuzzy prime ideal is a fuzzy maximal
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Proof Let P be a fuzzy prime ideal, then P is a
prime ideal in R . Then it is a maximal ideal in R
because R is an Artinian ring ( see Proposition 8.1 of
[1]) . Then P is a fuzzy maximal ideal in R. p
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