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~ specially for high travelling velocities.
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The transverse vibration of a simply supported beam subjected to moving loads is analyzed. The
~ analysis takes into consideration the shear deformation and the rotary inertia of the beam. An
experimental set up is presented and the experimental results are discussed all together with the
~ theoretical values obtained from a numerical Runge-Kutta solution.
* dynamic response of the beam is affected clearly by the travelling velocity of the moving loads,
The experiments highlight the existence of a velocity
- generated signal which increases with the travelling velocity.

The results show that the
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NTRODUCTION

The dynamic response of an elastic structure
ubjected to moving loads has been studied
xtensively over the past decade. These studies
ere initially directed at civil engineering
pplications  such as railway tracks and bridges
ubjected to moving vehicle loads (1-7). Recently,
he moving load problem has been a topic of
ngineering interest because of its apparent in many
odern machining operations such as high speed
recision drilling and ballistic machining, beside the
Dng truss-type space frame structures, [8-10]. The
Xtreme positioning accuracy required in the modern
nachining operations requires minimizing of the
nduced vibratons to achieve the desired
performance.

‘The earlier studies treated the problem using the
lastic Bernoulli-Euler beam assumptions [11-13].
All of these studies solved the governing partial
ifferential equation for an elastic structure excited
by moving loads with constant velocity via an
igenfunction expansion.  Other investigations,
[14,15], developed some finite element models to
simulate the response of the same type of structures
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(Bernoulli-Euler beam).

However, the response of a beam to a moving load
with corrections for shear deformation and rotary
inertia effects, which may be important for high
speed moving loads, has not received much attention
[16]. This study presents the steady state response
of an elastic beam subjected to several moving
harmonic loads. The analytical solution takes into
account the shear deformation and the rotary inertia
of the beam. An experimental set up 1s presented
and comparison between the analytical and-
experimental results are discussed.

THEORETICAL ANALYSIS

Figure (1) shows a simply supported, initally
undeformed, and at rest beam excited by a harmonic
moving load (P, = P, e'®)  The harmonic
excitation force moves with constant velocity (v)

Considering Timoshenko beam by including shear
deformation and rotary inertia, neglecting the viscous
damping effect, the equation of motion governing
the transverse vibration of the beam can be written

A 145 -



GOMAA: Theoretical and Experimental Analysis of the Dynamic Response of a Beam ...

as, [10, 17].
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Figure 1. Model of a beam subjected to a moving
harmonic load.

where; y, ) Is the transverse deflection, Py, , is the
applied force, is the mass per unit length, E is
the modulus of elasticity, I is the second moment of
area, A is the cross-sectional area, G is the shear
modulus, 1 is the beam length, r is the radius of
gyration and K’ is the shear coefficient ( for

rectangular cross-section).
The moving harmonic force P4 ) may be written
i
as;

P

wp = Pog™ 8(x - Vi) @)

where; v is the velocity of the moving force,

@ 1s the circular frequency of the harmonic
excitation and &(x) is the Dirac delta function
defined as;

8(x -vt) =0

[ 8 - vwdx = 1 3)

In the case of simply supported beam the boundary
conditions are:

o f B - s (O
Yoo = (Q)(o.:) =0 and yg, = (E‘i)cu) =0 @
Zero 1nitial conditions as assumed are;

_ Joy i
Yoy = (5)(:‘.0) =0
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Solving the equation of motion (Eq. 1) by usi
the modal expansion technique, one can assume
solution as;

y(x.t) = E Yn(t)¢n(x)dx
n=1

where, ¢_(x) are the modal shape functions and Y|
is the modal amplitudes which vary with time.
The orthogonal set of natural mode shape functio
¢,(x) are, [18] and [19];
nrx 1

¢, (1) = sin(—)
X

Substitution for the tme dependent m
amplitude Yn(t) leads to the modal equation |
motion which could be written as;

d 2y, '
= * Gy * Cala = A [ $.0P ydx
$ (

1 1
<A [0 T B + A, [0 TR
with;
Cy = %‘% [12 + r@m)(l + K‘?G)l
C, E?(zt_;A;G(nT")‘
2K'AG 2EI E
At r’m?l A = Al ~ml

', > Yo n (%5 vty sin (2% w
- sin (— —_—

dt‘ i n=] A 1 1
d2Yn nw nnv

fhge Y [A‘ AT A’(_l—)]

= d%Y, . nx . 0%
2; i sm(—l—vt) sin (Tvt) +C, Y,

nnvt
0 )

- [— A+ AR Aa(—“—’lﬂ)zJ yg sin (

In matrix form, Eq. (7) could be written as;
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4
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| dt*
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€, + M,le) MM,L, - (MML) 1| &
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MML, (G + ML) .. MML, -
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c, 0 0o 0 o] M LM,
0 C, 00 0| % LM,
+/0 0 C,0 0 =y.g
0 0 o 0
0 0 0 0C,] Y, LM,
where, S )

- A+ Az(“T")2 + 46‘3(“—’13)2 for n=1,2, ..

nmvt

M = sin(—l—) for n=1,2, ..

iwt
1 Pe

y = , and g with gravitational acceleration.
g

t GENERALIZATION OF THE PROBLEM

Figure (2) shows the simply supported beam
excited by several harmonic loads
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Figure 2. Model of a beam subjected to several
harmonic moving loads.

The steady state response of the beam in such case
could be obtained directly by linear superposition of
the steady state response of the individual forces. In
this case the general equation of motion will be in
the form,

& n a0 +_ﬁ_(ﬁr2‘_li3_’_m d“‘y )
x*  a? ox2dt? K/AG  dt*  dx*at? O
= Ple"""é(x - vlt)Pzem"&(x - vt + P3ei°"6(x - V1)

The steady state response of the beam represented
by Eq. (9) could be obtained directly by
superimposed the steady state response of similar
beams each one excited by only one of the
excitations P.¢'®Jt 8(x-v;t), providing that these forces
are harmonic and regardless to their amplitudes,
circular frequency or moving velocity [16]. Equation
(9) is solved using the classical fourth-order Runge-
Kutta method with fixed step size. The solutions
run for a single harmonic force moving with a
constant velocity and for two similar harmonic forces
moving with the same linear velocity. The
numerical values used are chosen to simulate the
experimental set up. The values used are

m = 0.863Kg/m , A = 125mm? , A = 1100mm ,

I = 260.42mm* , K’ = % , E = 200GPa

G=80GPa, r=144,P_ =50 N, w = 125.6 rad/s
The results obtained will be discussed later with the
experimental results.
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EXPERIMENTAL SET UP AND PROCEDURE exciters distances 200 mm apart. Four differe
longitudinal load speeds, namely 0, 0.20, 0.65,

Figure (3) shows the experimental set up in which 24 m/min were used in each set. The loadi

5x25 cross section and 1100 mm length steel beam frequency was chosen as 20 Hz to be as near

specimen (4) is supported by pin joints at both ends practical to the first natural frequency of the syste

(3) on a rigid steel structure (1) equipped by guide and the resulted signals at the beam mid-span fi

platens (2). The longitudinal motion of the load each run was recorded. A summary of
with respect to the supported beam is obtained by a experimental program is presented in Table (1)
helical 29 mm diameter, 4 mm pitch and 1200 mm some examples of the recorded response fi
length lead screw (5). The lead screw is screwed different loading conditions are shown in Figures (

into the moving tables (6). The drive system (5), (6). ‘
consists of a 12 V DC motor coupled to a planetary ‘
gear box (7) and v-belt drive (8). The loads are

applied through an extender (9) with adjustable {
length to ensure its contact with the beam. One end

of the extender is equipped by a 6 mm inner 4
diameter ball bearing to reduce the sliding friction |
and the other is screwed into the exciter head. A
sine wave generator type 1027 B&K (10), a power
amplifier type 2706 B&K (11) and two similar
vibration exciters type 4809 B&K (12) are used to :
produce the harmonic loads acting on the beam. ML\‘ ﬁi“ M'\'VI ﬂu
The response signal is picked by an 4332 B&K
accelerometer (13) via a charge amplifier type 2635
B&K (14) to a high resolution Signal Analyzer type . ) .
2033 B&K (15). The freezed signals are recorded Figure 4. Resl?onse at mid. span to single harmon
using 2308 B&K X-Y Recorder (16). load acts at point 3.
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F igure 3. Experimental set up.

Figure S. Response at mid. span to two harmor
loads moving through point 1 and 2 with velocity (
m/min.

The beam is divided into parts by marking as
shown in Figure (3) then mounted once for all series
of experiments to cancel the effect of the interaction
of the supports in the generated signal. Two sets of
experiments were conducted, using one exciter only
(single moving harmonic load) or by using two

RESULTS AND DISCUSSION
In the Runge-Kutta analysis the prescribed ax

velocity of the moving load is defined by a no
dimensional parameter given by;

A 148 Alexandria Engineering Journal, Vol. 34, No. 2, April 1995



GOMAA: Theoretical and Experimental Analysis of the Dynamic Response of a Beam ...

nv

A, (i

" where, v is the axial velocity of the moving load and

" © is defined by;
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" Flgure 6. Response at mid. span to a single load

moving through point 5 with velocity 2.4 m/min.

The value used in our analysis is w; = 528.2 rad/s.
The mid-span deflection yj ;, is normalized by the

~ static deflection yg 1, when the load P is applied at

the same point.

pL?
48EI
The results obtained for o = 0.12 and o = 0.5 are
presented in Figures (7) and (8). These results were
obtained using 5-term assumed functions (n=5). It is
obvious that the deflection of the beam mid-span is
affected by the travelling velocity of moving loads.
Although the effect is small for small velocities, the
deflection increase with about 60% for o = 0.5.

It is extremely difficult to achieve such linear
velocities in the experimental approach. The
velocities used in this approach were 0, 0.2 m/min,

(12)

Yap =

. 0.65 m/min, and 2.4 m/min. These velocity values
- are very small compared with the clearly effected

values obtained by the theoretical analysis. However,
there are clear changes in the experimentally
obtained dynamic behavior according to the
travelling velocity (Figures (4), (5), (6)). The
obtained response of the beam mid-span due to one
load moving with the mentioned four speeds is
presented in Figure (9) as a function of the load
position. Figure (10) shows the response due to two
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;

loads moving simultaneously with the same speeds.
Another remark which could not be obtained by the
used numerical technique and highlighted clearly in
the experimental graphs is the velocity generated
response which obtained at a frequency ranges about
60% of the excitation frequency. This signal is
clearly increased as a function of the load travelling
speed.

Y/ N,

02 A o 0o [} e

Figure 7. Normalized mid. span deflection as a
function of load position, a=0.12.

02 X . L o 1o

()

Figure 8. Normalized mid.
function of load position, a=0.5.

span deflection as

Some of the theoretical results correspond to

experimentally obtained are normalized and
calculated in db by using the well known
transformation;

¥
db = 20 log,, ?l-”——
sLf2

The comparison shows a very good agreement with
respect to the experimental precision.

From the previous discussion one can conclude
that:
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The dynamic response of the beam is affected by
the travelling velocity specially at high velocities.

A velocity generated response is clearly obtained in
the expenmental response. Such response could not
be attained with the existing theoretical techniques.

The previous remark highlights the importance of
designing an experimental set up which could be
capable to achieve high travelling velocities and to
detect its response with sufficient precision. The
advantage of the experimental technique is to have
a complete frequency spectrum for the response.
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