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BSTRACT

The three dimensional motion of a rigid body about a fixed point in both the uniform and the
Newtonian force fields is considered as one of the important problems in theoretical mechanics. The
periodic solutions of this problem were obtained in the form of poincaré’s expansions for different
cases of the natural frequency w as well [1-3] except some singular values of w, namely; when w=3
and w=1/3 for examples. In this paper, the periodic solutions for the case w=3 are constructed in the
form of power series expansions containing a small parameter proportional to the inverse of the initial
fast spin of the rigid body. At the end, the geometric interpretation of motion is designed using

Euler’s angles to show the resulting motion.

Keywords: Rapid rigid body motion, Perturbation techniques, Nonlinear Oscillations, gyroscopes, Periodic
solutions, Poincaré Method, Unsolved cases of periodic solutions of rigid body motion.

INTRODUCTION

Let us consider a rigid body of mass M rotating
bout a fixed point O, whose ellipsoid of inertia is
hitrary and its center of mass does not coincide
ith that point. Let the body be subjected to a
lewtonian potential field exerted by attracting
enter namely O, locating a fixed downwards Z-axis
nd at distance R from the point O. Choosing the
xes OX, OY and OZ to represent the fixed frame in
pace and the axes Ox, Oy and Oz to represent the
fincipal axes of the

ellipsoid of inertia constructed for the body at the
fixed point O. Let Z be the unit vector in the
direction of Z-axis, its direction cosines with respect
to the moving frame (Oxyz) are v, 7/ and 'y//.
Assuming that at the initial instant of motion, the
body spins about z-axis with a sufficiently high
angular speed r, and that this axis makes an angle 6,
#Zmn/2,(m = 0,1,2,...), with the Z- axis. In this case,
the differential equations of motion and their first
integrals are reduced to the following system with
one first integral [1]: ‘

P2+ 9P2=1 F(pyD2,v2s V2o )s W2ty =ul ® (P2:P2>Y2> V2> 1) 1)

) 2 .2 ; 2.2 .. 1, -1
Yo ~1=Y3+¥2+20(vpy Y+ VP2 Y2 +520) +u2 [y Py - 24 5(e, AL Y2+ Af Pasa

1. /-1 -1 2
*5Vasuyg @ AT +vEp] w20 2 siD 143 (), (2)
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where:

D 66

F = Fy+pFy+e, = @y +ud;+-,

F, = f,+8veyp;, ®, = ¢,-8v(e+e;yz),

Fy =fi-e1¢; + 8ve(e+eyy), @3 = d3-vfy-8v7erp,,

fo = Ao 7x) 55 ~9pys11+ CLAT PapF - 3L a7V pr YL AT (A +a T vy
X PyAs - 20 a1 py k(1= Cv2P2, +A1(1+By) v, -A1py(1 -1,

$2 = ~vz511+(L+BDpysz ~(1-COA; Papaia+x) 45 -0 Y22
~2) by +x) b7 - ATy 07 +K(CiAG - B )Y,

£ = LA prlepy+ervapr-2py(y, a ™ -e22)] ~9esiy +e1 72511 +2p2512)
+A1b7x] sy 4x] vy PE-7,00) a7 - €91 -y, a " H2(e +e1v) +vapaps]
+3) (1 +a a Dlya() a7 ~ezi) -vpapl + 124 @7 - A1b Dysyy
~z)a We+eyyz+p2sy) +k(1=CP G a ™ ~ez42) Y272 -v(1 - Cpapay2
~2v,A1PyPrv2 -V, (1 - C)vyP7 - VAL (1+B))pysy +2 Aipysy
+(9-AD Y252+ Ar (e +e ) (1 -7,

b3 = 2x) VyPrva- 272512 VP21 +(1+BD [pasyp + (e +e172) 521
+(1-CPA] [Pov 00871 - 92 ~v2papy - (e +e172)P272)
~2) b7 0Py +1250) + 2 b sy + AT (272020 a7 e72) -vpap )

- YL (VP2 + V2 v2P2) + k(P (Cy i3 -B)) +27,;, C1py 72 - Bysp) ks
P2 = Py-pe-pegy;, Y2 = Y1~HKVP2s
q = ‘A1—1P2+MA1_1()’£¢1_1"ez‘?z)*ﬂzl(aAO-l)’;Szl*-;—Aflpz-‘n*k?zszl
~vapr(@” A7 2] -0 1+ 1Ay, 522 *%41_181‘?2511 +A] ' pasiy
va A e z) 4y a T A sy @) gy ) +e-a AT 2 )@ Ay,
a7 AT ) 4y v ki) +a VAT 2 pasyy +k oSy + sz

-1 . 3. -1
-4, 3172"2-'723'11'2141 DaSa) ]+,
r o= 1*-;—ﬂ2311+u3512+--~,
/_ . 2 1./ -1, 1.
Y1= Y2 +uvapr+utl(ady) "y, -4, (3272+P2S21)'§72311]
-1 . 1 -1 . _ -1 /
+ 1P [-4] (e19251 *P2822) +5 B Ay Vgt ~Tasiz+vpk-a YA 20,

- -1 — = .
+2a lAl y‘ﬁle +(2k-a lAl 12;)’72521]"'""

/
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/! /! /!
p1=17/6\/70, q1=q/m/7,,, ry=rir,, Y1 =717, s

'y{ = 7’/7(/,/ . 7{/ =y /7,/,/ , T=r,t, (.=d/dr); (5)
$1= @y, P +b (D1, - PDIAL -2 [x) (Yoo =72) *¥0 (20 = 42)]

ckla(ye, -73) +b (G, -3 »

S12=4a [e(IJzO -p2) +e1(p2,Y20 P2 ’Yz)] - bA1_2 [y; a’! (I’Zo -p2) -e; B20Y20 = P2 '72) ]

~Vx) (P2, ~P2) ~VaYo P20 ~P2) *+ (2) KI5y

+k[va(paov20 = P2¥2) +V2b P20 V20 =P2¥2) ),

$21 =0 (P20 Y20 P21 ~b AT (Poo V20~ P22)s

$22=alv(pg, =P ve (rag=12) +e; (13, = V)l +b AT [=v2 (Py, ;)

T PP . s2 +2
+aly, (Y20 = 72) —€2 (12, = 1215 (6)
4,=CB B -A-C (-B4" ., >0 0«1,
A B

A B Mgt e\l ,
a=4, p=2, 2=-78" = 12 X=X =0y,

C C C w ro o yO yo
zo=£’zol, £ =x§+y02+zf, ABy=-9, , e=%x£A1b"1,

=
ey +a’'z, —kAy,

o1 = £ kO-Ap+z) @ -Ab D) v=-2(1+By, e,

NRZ, )

]

- VZ=V_A1-1’ k = N’Y” /cza N = Sg/R’ g

o

ere A, B and C are the principal moments of (©) ©) © ©)

itia; X, y, and z, are the coordinates of the ﬂzo + 9pzo =0, Y3 + vy =0, )]
i pse in t_he moving goardinage systenn: P4 which gives periodic solutions in the forms:
r are the projections of the angular velocity

tor of the_ body; A is the coefficient /of attra?/tlon pz(o) = M, cos3t+M,sin3r, 'Y(ZO) = Mjcost, (9)
e attracting center; Py, Qo Tor Yoo Yo and 7y, are

 initial values of the corresponding variables. with period T =2w, and M;, M, and M; are
1, is large, then p is small. constants. The following initial condition:

ONSTRUCTION OF THE PERIODIC P2(0,0) = p2(0,0) = (0, ) =03 “HEEH)
OLUTIONS does not affect the generality of the required
. solutions [4].

this section, Poincaré’s small parameter method Making use of Poincaré’s small parameter method,
pplied to construct the periodic solutions of the periodic solutions for system (1) are expressed by
em (1). For this system, the following generating the following forms [5]: :

m (p = 0) is attained:
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where E = \/Mlz +M22 ,E= tan”! M,/M;. Making

use of (16) and (6) to get:

oo
pa(7p) = Mycos3t+M,sin3r+Y . p*Gy (1),
k=2

Yo(1,p) = M3cos1-+k§; p* G (1), (11)
where
M; = M;+B;,(i=1,2,3), (12)
2
U=u+ 631411'81 + 6{1’&;262+ 3?133‘83+ 21:1;125%4-...,
U= Gy Hy (13)
u=gp h

The quantities 8, 38, and 3; are the deviations of

the initial values of p,, p, and 7, of system (1)

from their initial values (p2(°), pé") and 2(0)) of

system (8), these deviations are functions of p and
vanish when p = 0. The functions g, () and hy_ (7)
take the forms [2]:

&) = 3] F (1) sin3(r 1)) dy,

hi(r) = j N &9 (¢))sin (r-1))dry, (k=2,3). (14)

The solutions (11) have the period T = 2 7 + a(p)
which reduces to 2 7 at u = 0, that is; «(0) = 0. The
initial condition (10) can be rewritten through the
following relations:

2,0, p) =M, ,p,(0,p) =3M,,v,(0,p) =M,,7,(0,p) =0. (15)

The solutions (9) are rewritten in the following
forms:

péo) Ecos(37-¢), 'yg’) =Mjcosr,  (16)

D68

(0) (0)@(0)91)50)’7(20)’72 )) (l,j 1 2) (1 ‘

The functions Fk(") and <I>k(°) are obtained from
(16), (17) and (3), then using (14) to determine

g2m), g (2m), h(2m) and h 2m) . Th

quantity Mj; is determined by using (15) into the

first integral (2), with 7 = 0, and can be written:

-pv M, -9;1.2v22M22/2M3
-3y, v, Mylad; M + -

7 / /I
M; = M,
(18)
The independent periodicity conditions [1] of the

solutions py(T.p), Py (1), va(mp) and 7§z (n)

take the following forms:
(L, -N,) M, = - p My[(Ly; -9N3,) - M M;Nyg] +-,

-9N, M I EE
(19_

(I:ll—gﬁﬂ)“ “[M [(L.u 91V31)+M3(L3“

ap) = u2 85 [Hy (2) + pHs 2m) +-],  (20)

=

where

Lp1-9N5y) = ay(MP +¥17) - [a, +9kb(2M; 85 )]

(L31-9N5) = asM M3, a;=(a-1)(a+b-2)/2b,
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a; =2/ (ab) ' [3(a+b)-2(2ab+1)] + 18k[1 -(a+b)+_;.bM32],

a3 =z/b71(20ab-1) +ka(b-1)(31-32a),

N38 =%(bwA1_1 -—a)[—2(z£ -k)+e1(1 "'Bl)'Zo, b_l "ZkBl

+kvA;(1+B;)]+

1 -— -
ZPv@-b)(1-o

+w (1-Cy] —-(1 +By)(ae; +bA; e2)+

%a(el +kv) +%(1 —Cl)Al_l(ez—wel)

Y+ Zol-epd; +kvyCil+ kvl =(dy +Cy)

w b(eyd;” +kv2),

L3y, =-j;k[8e1(a-b)—%z; (a7 1-A;b7 1) (@-b) +ey(1-Cy) +e 4

+(4;-9)(ae, +bey A )], 1)

ating to zero the terms of zero power of p from
9), to obtain the following two equations for
rmining M; and M:
o, (M} +M}) - a,1M,=0,[a, (M} +M}) -a,]M, =0, (22)
ich have the solutions:

(M, = M, =0,
1

(ll)Ml =0, M2= + [azal_ll-z,

1
' (ii)M;y = +[aya.-11%,M, =0,
1

)M, = t1aza;" -MAZ (=12 =2,1), &)
here M; and M, are real under the condition:
a, > 0. 24)

Thxs condition can be satisfied either by the choice
lof z or a and b. The condition al>0 1s satisfied at
all, smce the initial fast spin r, is assumed to be
given about the major or the minor axis of the
ellipsoid of inertia (a > 1, b> 1 ora < 1, b <1). The
solution (iv) for the constants M, and' M, represents
a family of arbitrary solutions in which the solutions

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

(i1) and (i11) are included.

We consider here, for example, the penodic
solutions which arise in the case of zero basic
amplitudes (M; = M, = 0). In this case, the
expansions of §; and 8, must be expressed in form
of power series containing only integer powers of p,
which is a vital difference between the classical
problem (k = 0) and the present problem (k;tO)
Assuming 3, and (3, take the forms:

B = 5_: wk e+ 0w, B, = 2 whmy+ 0. (25)
k=1 k=1
Using(25), (21), (12) and (19) to yield:

6 =MjLy,8;", fp=m=0,3i=1,2,3),

G=a, '1[91(3191‘“18""1‘1”3 +M,a, -9N;;M;) (26)
‘3VM3 Lyl '
Now, using the equations (13) and (14), the

functions G, (7) and H (7) are obtained and the
periodic solutions (11) are determined up to the

third approximation. Returning to the formulas (4),
(5) and (6), the following solutions are obtained:
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3
P = cv'y",/ [y,(e+e1M3cosr+L’lcos3T)+p,32 ;cosiT+J;siniT)] +-,
i=0

/! -1,/ -
q = ‘Yg {I"’Al (yoa 1

+e2M3sin‘r "’3[1 Sin37)

4
"’ﬂs [E (I,-/ CcosSiT +Ji/ sinit) +JSI sin57] } o

i=0

r=ry{l

~u2M;x! (1 -cos7) +y! sin +%kC1M3 (1 -cos2r)] +u3[0]} +--,

2
Y = 'y; {M;cost +p?| Y (V;cosir + W;sinit) + V3cos37] + p2[01} +-y

i=0

2
¥ = v" {-Mjsinr Y v/ cosir+ W/ sinit) + W sin37] +p3[01} +-,

i=0

Y’ = Y(/,/ {1 +M2M3[%M3(e1a+be2Al'l)+ae+x; +%kC1M3+all

-(x) +ae)cost+y. (1 +ba"A,“)sim+.;_(3b,4;‘»z, -at, —%kC1M3

-ejaM; -eszl_lM;; )cos2t - %t’l (a +3bA1_1 )cos4r] +p3[0]} +-,

_.where the constants I’s, J’s, v ’s, J/ ’s, Vs, v/ ’s, W’s
and W'’s are determined in terms of the rigid body
parameters and are written in about ten pages. The
symbol(...) means terms of order higher than O(u®).
Using (20), the correction of the period of(p)
becomes: '

a(k) = % W2 Myx!-8ve, ~2/b™ +k[ME(b-a) -B,1} + (0] +
" (28)

3. THE GEOMETRIC INTERPRETATION OF
MOTION

In this section, the motion of the body is
investigated by introducing Euler’s angles 6,y and ¢
which can be determined through the obtained
periodic solutions. Since the initial system is
autonomous, the perodic solutions will remain
periodic if (t) is replaced by (t + t)) where t  is an
arbitrary interval of time. Euler’s angles in terms of
time take the forms [6]:

D 70

" d¢ mﬂn
Ydr 1-42°

d d
Tf = r—%cosa, tang,, =T
o

Now, we investigate the geometric interpretatior
of motion for this body as following: :

Making use of (27) and (29) and assuming that
initial instant of time corresponds to the instant ¢

t,» onc obtains:

cosf =7y

b, =%+roto+~~-, (30)
from the formulas (18) and (29), one obtains:

0, =tan"! Ms, (31)

mtroducmg, in this way, arbitrary initial angles of
spin and nutation (¢, and 6,). Making use of @),
(29), (30) and (31), with the substxtutlon T =1, t, the
following expressions of Euler’s angles can be
written in the form of small parameter expansions:
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0 =6,-u2160,(t+1,) ~0,(t)] +p[0] +-,

¢ = ¢o+{ro—MgeC'lro_l[%cosOo(el —e2A1'1)+sin00(x; +:1ikCl tanf,)]} ¢

+u[pp(t+1,) ~ 5 (t,) ] +p°[0] +--,

0,(t) = - (x] +ae)cosr,t+y! (1 +ba“IA{‘)sinron_;.[zl(sbA;’ -a)
-caneo(%kcl+e,a+be2A1”‘)]coszr,,z—%el(a+3bA1“)cos4rot,
e /I -1 ,-1 1 -1

V() =esinryt+y,a™" A, COSfot+Z[(€2A1 +e)tanf,

+0,(1-34; ) ]sin 2r0t+%£’1(1 +347 )sin4r 1,
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Y=y, + .;_Mge C7lr; ey —ep4; " )1+ plcosect, [ Y (1 +1,) = (t)] + 4> [0] + -,

(32)

1, -1

+Z[ro

ONCLUSIONS

or the motion of a rigid body about a fixed point
Newtonian force field, the following results are

cluded.

- Using Poincaré’s small parameter method, the
periodic solutions for the equations of motion of
the body are investigated in the form of power
series expansions containing the assumed small
parameter.

This problem deals with the following bodies
(which are classifyed according to the moments
- of inertia):
1. C>A>B, B <uC, A > %C,
2.C>B>A A<uC, B> uC,

The obtained solutions are the generalized ones

(1) =(x ; tan @, —ecotf ) sinr t +y o/ (tanf,-a ! Al_l cotf,)cosr t

kCytan?6,-e,A; " -e; -£ cotf,+32,A; ' cotb,lsin2r

- %(1 +3A1—1)[r0_1cos4rot+%€cotﬁosin4rot]. (33)

of the corresponding problem in the uniform
gravity field (k=0), that is; the latter solutions
can be deduced from our solutions if the terms
characterizing the Newtonian field are
neglected.

Using Euler’s angles, expressed in the form of
power series expansions containing the assumed
small parameter, the geometric interpretation of
motion is investigated to show that the resulting
motion is of pseudo-regular precession type
which depends on four arbitrary constants;
namely: the initial angels of precession, nutation,
pure rotation and sufficiently high spin r,.
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