PARALLEL PROCESSING OF NESTED RELATIONAL DATABASES

Saleh El-Shehaby’ Mohamed S. Abougabal, Alaa Eldin Hafez,
and Alaa S. Youssef

Dept. of Computer Science and Automatic Control
Faculty of Engineering, Alexandria University, EGYPT

ABSTRACT

This paper addresses the problem of parallel processing of nested relational algebraic operators. A
modified scalable vertical partitioning technique, as well as a novel hybrid approach, that yields a
high degree of parallelism, are proposed. Also, a heuristic approach, for devising parallel execution
schemes that guarantee near optimum speedup, is introduced. It is validated versus the optimum

speedup obtained using exhaustive search.
Keywords.
1. INTRODUCTION

Current trends in software, led to the appearance
of the nested relational model in database systems
[1,2,3,4,5], in order to support the new fields of non-
traditional database applications. Also, the trend
nowadays, in hardware, is towards parallel computer
architectures. Recently, some work was done in the
field of parallel processing of nested relational
algebraic operators. A vertical partitioning technique
for processing union and difference operations was
introduced, as well as a horizontal technique for
processing the remaining five primitive operators
[6,7]. Moreover, a horizontal technique for processing
union and difference operations was proposed in [8].

Although, only the union and difference operators
were studied in [6,7], using the vertical partitioning
technique, yet close study of the technique indicates
that it is applicable to all nested relational algebraic
operators. However, it is only useful if the number
of available processors, p, is equal to the number of
leaf-nodes, L, of the scheme tree representing the
nested relations being processed. The technique
does not apply if p<L, and the extra available
processors are not utilized if p>L.

In the horizontal partitioning. techmqueb proposed
in [6,7,8], the extra available processors are wasted if

NINF relations, Nested relational algebra, Parallel processing.

p > n, where n is the number of tuples being
processed. In case of binary operations, n is the
maximum of the number of tuples of the two nested
relations.

In this paper, the vertical partitioning technique of
[6,7] is modified and presented in section 2. The
modified technique is still applicable to all nested
relational algebraic operators, and overcomes the
scalability problem, mentioned above, when p<L.

In section 3, a novel hybrid partitioning approach
is proposed. The approach employs the hornzontal
partitioning technique of [8], which is applicable to
all binary operators, and the modified vertical
partitioning technique of section 2. It is shown to
yield higher degrees of parallelism, compared to
those offered by existing partitioning methods.

The recursive partitioning of internal relations,
using a heuristic approach, which employs the
developed techniques of sections 2 and 3, as well as
the horizontal technique [8], is proposed in section
4. 'This heuristic approach is validated,
expenmentally, and shown to be efficient in most
practical situations. Finally, the paper is concluded
in section 5.

*Dr. El-Shehaby is with the Medical Research Institute, University of Alexandria, EGYPT.

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

B 27

SHEHABY, ABOUGABAL HAFEZ and YOUSSEF: Parallel Processing of Nested Relational Databases

2. THE MODIFIED VERTICAL
PARTITIONING TECHNIQUE

The existing vertical technique [6,7] is not
applicable if the number of processors is less than
the number of leaf-nodes, of the scheme tree,
representing the nested relations under cosideration.
In that technique, a manipulated tuple, is divided
into a number of partitions. Each partition is a path
from the root node to one leaf-node of the scheme
tree, and one processor acts on each partition. After
all processors complete execution, the resulting tuple
is constructed by gathering together the partial
outputs of the processors.

In this section, a new modified vertical technique
is proposed. It is based on partitioning the external
relation. The nested relation is partitioned into a
group of nested relations, each having a scheme tree,
that is a sub-tree of the original relation scheme tree.
Each partition may have more than one leaf-node in
this case. The natural join of this group of nested
relations yields the original nested relation. The
problem of scalability of the technique prevails when
the number of processors, p, is less than the number
of edges, b, emerging from the root node of the tree
to be partitioned. b is normally less than the number
of leaf-nodes, L.. We propose to solve the problem in
two steps.

Step-1: Each sub-tree, corresponding to an internal
nested relation, that is an immediate son of
the root node, is assigned a weight, W,,
proportional to the total sizes of nodes of
the sub-tree, counted in disk blocks, and is
given by: W; =X N; Vj such that node j is
in subtree i.

Step-2: The heuristic algorithm, which is presented
in Figure (1) after [9,Pp.107-110], is
applied.

The correctness of the technique is established in
[9,10]. It may be shown that the time complexity of
the algorithm is in the order of O(b log, b + b log,
p) comparisons. The algorithm does not require
accessing the tuples of the nested relation, and
hence does not require any disk access. Its memory
requirements are limited to the sizes of the input
and output lists, declared in Figure (1), and are
proportional to b and p, respectively.

B 28

This proposed vertical partitioning technique has
the following advantages over the existing vertical
technique proposed in [6,7].

1- The technique applies parallelism on the relation-
level, and not on the tuple-level. This reduces
the amount of synchronization overhead required.
The reduction in synchronization overhead results
in considerable gain of speedup, especially when
the algorithm is implemented on shared nothing
architectures.

2- The algorithm is scalable, and can be applied to
any number of available processors, less than or
equal to the number of leaf-nodes. Thus,
eliminating the constraint imposed by the
existing technique [6,7]. This allows for gradual
increase in speedup with the increase in number
of available processors. The importance of this
feature is evident in the vertical partitioning
phase of the hybrid approach presented in the
next section.

This approach is useful for p<b. If p>b, then the
approach of the next section is applied to increase
the degree of parallelism.

3. THE NOVEL HYBRID PARTITIONING
APPROACH

It is pointed in the above sections that the
maximum number of utilized processors is b in the
case of vertical partitioning and n in the case of
horizontal partitioning. Therefore, if a hybnd
approach is devised, which either applies horizontal
partitioning, proposed in [8], followed by verticaal
partitioning, of section 2 (this is referred to as HV
partitioning), or vice versa (VH partitioning), then
the maximum number of usable processors could be
nb. The advantages of each of these two partitioning
methods will be demonstrated.

3.1. HV Partitioning

In this situation, the nested relation is first
partitioned to n horizontal partitions. The remaining
available processors are equally allocated for vertical
partitioning of each horizontal partition (nested tuple
in this case). The scalability feature of the proposed
technique of section 2 is useful in cases where n <
p < nb.

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

SHEHABY, ABOUGABAL HAFEZ and YOUSSEF: Parallel Processing of Nested Relational Databases

Algorithm Pack (IL, p, OL)

Input: 1- An Input List, IL, of tasks. Each entry corresponds to one internal relation, that is an immediate
son of the external relation. Associated with each entry is its weight W;.
2- The number of available processors p.
Output: An Output list, OL. Each entry corresponds to one processor and is composed of a list of tasks
(internal relations) assigned to that processor, as well as the total weight assigned to the processor.
Begin
Sort IL in descending order of weights;
Initialize the total weight assigned to each processor to Zero;
While (task list IL is not empty) do
begin
Get the first task from the task list IL;
Search the processor list OL for the first processor with minimum total weight;
Add this task to the chosen processor list and increment that processor’s total weight by this task weight;
Remove this task from the task list IL;
end;

End.

Figure 1. Algorithm for scalable vertical partitioning

Algorithm Distribute (IL, P, OL)
Input: 1- An Input List, IL, of b tasks. Each entry corresponds to one vertical partition of the tree.
Associated with each entry is its weight W,
2- The number of available processors P such that
P > b.
Output: An Output list of integer values, OL. Each entry corresponds to one vertical partition, and is equal
to the number of processors assigned to that partition.

Begin
Assign one processor to each vertical partition;
New_P := P - b;

Get the total sum of weights T;
For each vertical partition i do
begin
Calculate the percent weight of i as
percent_weight; := W, / T ;
multiply percent_weight; by New_P to get the real number of processors for that partition Real_P;;
Increment the number of processors assigned to partition i by the floor of Real_P;
end;
Get the remaining number of processors R;
Sort IL in descending order of fraction part of percent weights;
EAssign the R remaining processors to the first R vertical partitions in the sorted list IL;
nd.

Figure 2. Algorithm to distribute available processors over vertical partitions

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

B 29

“ho

SHEHABY, ABOUGABAL HAFEZ and YOUSSEF: Parallel Processing of Nested Rclatio_nal Databases

3.2. VH Partitioning

In this situation, . the nested relation is first
partitioned vertically, to b partitions. If p=nb, then
each vertical partition is partitioned to n horizontal
partitions. Otherwise, when b < p < nb, we propose
the following algorithm which determines the
number of processors to be assigned to each vertical
partition of the scheme tree.

Step-1:Each vertical partition is assigned a weight
that is proportional to the total sizes of nodes of the
sub-tree corresponding to the partition, counted in
disk blocks. W; = X Nj vj such that node j is in
subtree 1.

Step-2:The algorithm, which is presented in Figure
(2), is applied.

The correctness of the technique is established in
[10]. It may be shown that the time complexity of
the algorithm is in the order of O(b log, b)
comparisons. The algorithm does not require
accessing the tuples of the nested relation, and
hence does not require any disk access. Its memory
requirements are limited to the sizes of the input
and output lists, declared in Figure (2), and are
proportional to b and p, respecuvely.

This hybrid approach as explained in sections 3.1
and 3.2 utilizes up to nb processors. However, if
p>nb then the extra processors may be utilized by
partitioning of internal relations, as proposed in
section 4 below.

4PARTITIONING OF INTERNAL RELATIONS

This section investigates the extension of the
proposed partitioning techniques, in the availability
of more than nb processors. The main idea is to
make use of the recursive nature of nested relations
and nested relational algebraic operators.

The definition of a nested relation is recursive. The
external relation R is defined as a set of attributes,
of which some are non-atomic. These non-atomic
attributes are nested relations themselves. A
corresponding property, in the definitions of nested

B 30

relational algebraic operators, is that most of the
operators are of recursive nature. For example, the
application of the extended union operator on R
involves the recursive union of all internal relations
of R.

An algorithm, employing recursive partitioning of

_internal relations, for parallel processing of a nested

relational algebraic operator, <op>, is depicted in
Figure (3). An important remark should be noted
about this general algorithm. The decision that is
marked by an * , which is choosing the appropriate
partitioning technique to be applied to a certain
externalfinternal relation, is a difficult and sensitive
problem by itself. This problem was thoroughly
investigated analytically for a two level scheme tree,
and heuristically for any general scheme tree.

Algorithm <op> (R, R;, R3)
Input: Two nested relations R; and R,
Output: The resulting nested relation Rs.
Begin

Partition R; and R, using a suitable method” ;

Cobegin
for each 2 corresponding partitions PR1; and PRZ;
do begin
operate on root ;
for each 2 corresponding sub-relations SR1; &
SRz,
do <op> (SR1;, SRZ;, SR3,);
end;
Coend; ;
Merge resulting partitions PR3, if necessary;

End.

Figure 3. Skeleton of parallel
processing <op>.

algorithm for

4.1. Analytical Analysis For Two-Level Trees

Nested relations with one level of nesting were
considered, in order to find analytically the
partitioning methods, that yield minimum time
complexity, for the parallel processing of an operator,
with a certain recursive cost function. The obtained
results are useful in situations where the nested
relational model consists of one level of nesting.

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

SHEHABY, ABOUGABAL HAFEZ and YOUSSEF: Parallel Processing. of Nested Relational Databases

. This appears in many practical situations. The
- approximated results are summarized in Table (1),
~and are used as heuristics in 'sections 4.2 and 4.3.
Detailed proofs are provided in [10, Pp.85-120]. The
‘used symbols: H, V, HV, and VH, denote horizontal,
vertical, horizontal followed by vertical, and vertical
followed by horizontal, partitioning, respectively.

4.2. A Heuristic Approach For Any General Tree

The cost of sequential processing of any nested
. relational algebraic operator, was shown to be in the
order of one of the five generic cost functions
_ depicted in Table (1) [3]. These cost functions
represent the number of disk block accesses. N is
the number of disk blocks containing the atomic
attributes of an externalfinternal relation. Three
cases were studied for each of the five generic cost
functions: no split cost, sorted tuples, and unsorted
tuples.

Table 1. Heuristics (approximated analytical
results).

Cost " No. of l No Split | Sorted |Unsorted
Function }{Processors Cost |Tuples | Tuples

Vv

\%

\Y

\%

5%

ng<p < ngb HV HV \%

p=<b,. H H H

b<p <n H H H

ny<p snb H HV HV

"p<bhb VorH| V \Y

Constant [b<p = n; || H H v

ng<p <nb HV HV. \Y%

Case 1: No Split Cost

No partitioning overhead is considered. This occurs
when the nested relation is in the required
partitioned form, or when the operator is applied on
a relation that is internal in the query tree (i.e. not
a leaf relation) so it is resulting from a previous

—operation and is in the required partitioned form.

Also, for some operators, the partitioning process is
trivial. For example, horizontal partitioning in the
case of extended projection, is just a matter of
assigning equal numbers of tuples to each processor.
Thus, no partitioning overhead is accounted for.

Case 2: Sorted Tuples

Split cost (partitioning overhead) is accounted for,
and the tuples of the nested relation are sorted.

Case 3: Unsorted Tuples

Split cost is accounted for, and the tuples of the
nested relation are not sorted. A distinction between
this case and case 2 is made, because the horizontal
partitioning cost is sensitive to whether the tuples
are sorted or not. Consequently, the hybnd
partitioning cost is affected by the state of tuples, if
sorted or not, too.

Cases 2 and 3 arise when the relation is a leaf
relation in the query tree, or when it is partitioned
in a form, that is not the optimal for the given cost
function, i.e. re-partitioning is required.

The results of Table (1) were used as heuristics,
and were validated for different classes of scheme
trees, which represent shallow, balanced, and deep
trees. This is detailed in the following section.

4.3. Experimental Validation Of The Heuristic
Approach '

The heuristic approach, summarized in Table (1),
was validated as follows. Experiments using nested
relations with different scheme trees, that depict a
wide nature of scheme trees encountered in real
situations, were conducted. These schemes are
depicted in Figure (5). The input to an experiment
is a scheme tree, with all related information of sizes
and numbers of tuples in -each node, and the
recursive cost function of the operator.. The

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995 B 31

SHEHABY, ABOUGABAL HAFEZ and YOUSSEF: Parallel Processing of Nested Relational Databases

experiment was repeated for each of the three cases

~which affect the pamuonlng overhead, and were
mentioned in the previous section. Dunng an
experiment, the number of available processors was
made to vary, in steps, from 1 to 1000. For each
step, the costs of two parallel execution schemes
were computed. The first is the cost of the heuristic
scheme; and the second is that of the optimum. The
optimum scheme is obtained by exhaustively
examining all possible partitioning methods at each
node, and selecting the combination that yields the
minimum cost. The cost measure was the number of
disk blocks accessed by the longest task. We call this
a comparison point. About 18,000 comparison points
were examined for each of the scheme trees of
Figure (4). The speedup achieved by each of the
two execution schemes is computed by the following
equation [11,12].

Sequential processing cost

Speedup = . ey
Parallel processing cost

The absolute error in speedup, E_, is obtained by
subtracting the speedup obtained by the heuristic
approach, Sy, from the speedup obtained by the
optimum approach, S5. The relative error in
speedup, E_, is computed by dividing the absolute
error by the heuristic speedup.

E, = Sg - Sps | @)
‘and,
T ®
o
where

Ty is the time complexity of execution of the
optimum scheme;

and,

Ty is the time complex1ty of execution of the
heunistic scheme.

For each set of nested relations with the same
scheme tree, average speedup factors obtained by
the optimum and heuristic methods, were calculated,
for different numbers of available processors. The
standard deviation, corresponding to each average

B 32

value, was calculated and found to be low. Average
relative errors, in speedup, for different cases were
computed. In addition, corresponding to each
average relative error figure, a figure named 0.1-P
was computed. It indicates the percentage of cases
that yielded a relative error, in speedup, less than or
equal to 0.1 .
Table 2. Performance Results Summary.

Class of nested | Overall average |% of cases with
relations (fig.4) ||E, (relative error) | E, < 0.1 (0.1-P)
| 1

Class a
Class b
Class ¢
Class d
Class e
Class f

(c)

mm%&

Flgure 4. Classes of scheme trees of examined
nested relations.

number of cases € which E <0.1
0.1-P=100* =

total number ofcases
or, 0.1-P =100 * Prob(E, < 0.1). @)

The results are summarized in Table (2) (refer to
[10] for detailed results). Shallow trees yielded best
performance. Deep trees showed the worst
performance, as their nature favors horizontal
partitioning. In cases when the heuristics imply other
partitioning techniques, their performance
degenerates. The results showed, also, that
increasing the number of nested levels, implies a
moderate degradation in the performance of the
heunistic approach. This is expected and was found

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

to be tolerable. ‘

- Close study of the results reveals the fact that the
heuristics of table 1 are valid in most practical
 situations.

- 5. CONCLUSION

In this paper, a new modified technique for vertical
~ partitioning of nested relatons, for parallel
- processing of algebraic operators, was introduced. In
addition, a novel hybrid approach, combining the
- introduced vertical and the existing horizontal
partitioning techniques, was suggested. The
approach that was taken is independent of the
underlying processors interconnection topology.
Advantages of the novel techniques over the existing
ones, were demonstrated. The novel vertical
technique is scalable, and allows for gradual increase
in speedup with the increase in number of available
processors, in contrast to the existing vertical
technique that works on a fixed number of
processors. The hybrid approach vyields higher
degrees of parallelism, not achievable by the vertical
nor the horizontal approaches, by allowing for more
data partitioning, in the availability of more
processors. This, in turn, yields higher speedup
factors in execution times.

The problem of partitioning of internal relations, in
addition to the external relation, was also addressed.
Deciding which partitioning methods to be applied
to the externalfinternal relations, in order to
maximize the speedup gained, using the available
number of processors, appeared to be a complex
problem. This issue was studied thoroughly, and a
heuristic approach was devised and validated. It was
shown that these heuristics could be applied
effectively, to partition any nested relation, using any
of the existing horizontal or proposed vertical or
hybrid techniques, in order to process any nested
relational algebraic operator.

REFERENCES

[1] Chen, Q., and Kambayashi, Y., "Nested relation
based database knowledge representation”,
ACM SIGMOD conference, Denver, Colorado,
June 1991.

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995

[2]

[3]

[4]

[5]

[6]

(7]

(8l

[9]

[10]

[11]

[12]

SHEHABY, ABOUGABAL HAFEZ and YOUSSEF: Parallel Processing of Nested Relational Databases

Tansel, AU., and Garnett, L., "Nested
historical relations", ACM SIGMOD
conference, Portland, Oregon, June 1989.
Hafez, A.M., "Storage Model for nested
relations", PH.D. Case western reserve
university, August 1989.

Colby, L.S., "A recursive algebra and query
optimization for nested relations", Technical
report, 1989, Indiana university.

Roth, M.A., Korth, H.F., and Silberschatz, A.,
"Extended algebra and calculus for nested
relational databases", ACM transactions on
Database Systems, Vol.13, No.4, December
1988.

Mahmoud, H.A., " Towards parallel nested
relational algebra", M.Sc. thesis, Comp. Sc. &
Auto. Control Dept.,, Fac. of Engineering,
Alex. university, Egypt, 1991.

Abougabal, M.S., and Mahmoud, H.A. "
Towards parallel nested relational algebra",
Second TASTED International Conference,
Alexandria, Egypt, May 1992.

Hafez, A.M., "Parallel algorithms for union and
difference for non first normal form relations",
Second IASTED International Conference,
Alexandria, Egypt, May 1992.

Goodman, H., Introduction to the design and
analysis of algorithms, McGraw Hill Inc., 1977.
Youssef, A.S., " Parallel processing of nested
relational databases", M.Sc. thesis, Comp. Sc.
& Auto. Control Dept., Fac. of Engineering,
Alex. university, Egypt, 1994.
Polychronopoulus, C.D., and Banerjee, U.,
"Processor allocation for horizontal and vertical
parallelism and related speedup bounds",
IEEE Transactions on computers, Vol.C-36,
No.4, April 1987.

Madala, S., and Sinclair, J.B., "Performance of
synchronous parallel algorithms with regular
structures", IEEE 'Trans. on parallel and
distributed systems, Vol.2, No.1, January 1991.

B33

