|

LARGE DEFLECTION BENDING OF FLEXIBLE BEAMS USING
ROBOT MANIPULATORS

sk Aly M. El Iraki
Department of Marine Engineering and Naval Architecture, Faculty of Engineering,
Alexandnia University, Alexandra, Egypt.

ABSTRACT

The problem of large deflection bending of a straight beam with linear material properties using two
manipulator arms is considered. The nonlinear governing equation is solved using a successive
approximation procedure. The required trajectories of the axes of the end-effectors are calculated and
the problems related to the contact nature between the end-effectors and the beam are discussed.
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NOMENCLATURE
E modulus of elasticity of beam material
f'(x) df(x)/dx
(&) df(¢)/d¢
1 Subscript:
1 = 0: "zero" (linear) approximation
1 = 1: 1st approximation
1 = 2: 2nd approximation
| 2nd moment of area of beam cross-section
k (subscript) position index
L length of beam
M moment acting at both beam ends
m dimensionless moment = ML/EI
R see Figure (1)
E: center. of rotation of right end-effector
B center of rotation of left end-effector
w(x) deflection of beam
w(x) dimensionless deflection of beam =
w(x)/L
%Y,z reference coordinate system for beam
xyz reference coordinate system for
end-effector
v increment of beam end-slope angle
0 reduction in projected beam length
8 dimensionless reduction in projected
beam length = §/L.
3 x/L
p(¢) radius of beam curvature
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p(§) dimensionless radius of beam curvature =
p/L

x(§)  curvature of beam elastic line

X(¢) dimensionless curvature of beam elastic line

¥(¢) slope angle of beam elastic line

¥, slope angle of beam elastic line at £ = 0

INTRODUCTION

Manipulators are increasingly used in many
branches of industnal activities, where one or more
of the factors: precision, reliability, speed, hazardous
environment or economy might justify their use.
One of the early application fields of robots was the
handling of rigid bodies (lifting, transporting, etc.).
Handling deformable objects by manipulators is a
field that has received attention only recently. [1]
Manipulating flexible objects poses more problems
than those faced with rigid ones. This is due to the
fact that flexible bodies may suffer uncontrolled
deformation due to their own weight or the forces
applied to them through the manipulator arms which
might lead to unwanted change of shape, geometry,
high internal stresses or even damage of the object.
To avoid these effects pads are used to support
flexible objects during handling, increasing weight
and volume of the handled object.
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Another type of application is to use manipulators
to achieve certain prescribed deformation of a
flexible body. This would require planning the
motion trajectories of the end-effectors so that the
required deformation is achieved in a controlled way.
Deforming flexible bodies, such as plates and beams,
using manipulators has a very high application

"potential in various areas, among which are:
shipbuilding, aerospace, automobile and electronic
industries.  Transporting large plates, in
shipbuilding, is a typical application in this area.
Aligning beams or plates, especially when high
accuracy is required, is another example. One recent
application 1s encountered in the production of
printed wiring boards where every sheet is first bent
to facilitate its alignment with two guide pins, with
very strict tolerance requirements, and then unfold
again for final alignment with the remaining guides.
This problem was addressed by Zheng and Chen [1]
who used a controlled buckling approach to achieve
the required deformation. The plate was
approximated by a beam. They calculated "ideal"
trajectories of the manipulators which would
minimize forces and moments on the end-effectors
and hence on the manipulator arms. Arriving at the
required deformation of the beam through buckling
subjects it to unnecessarily high stresses, which can
cause permanent deformation, or even damage in
some cases.

In this work an alternative approach is adopted in
which the beam is subjected to bending moments
through moving the end-effectors, just as a human
would use hands to achieve the same result. It is
aimed to keep the beam free from axial forces,
contrary to the buckling case, with subsequent
reduction in stress levels.

In most cases the required deformation, or more
precisely the slope of the deformation line, will be
large, with slopes approaching 40°. Therefore
nonlinear analysis is required. A method is used
based on successive approximation of the solution.
[2] It was found to give very good results when
applied to the problem of beam post-buckling
behavior. [2,3]

The problem of finding analytical solution to the
nonlinear bending problem has been tackled before
in e.g. [4,5]. In [4] a solution was found using
elliptical integrals and Maclaurin’s series. The
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method is however lengthy and very complicated to
apply. Moreover, and more importantly, it would not
be of much help for the present problem which is
different due to the fact that, unlike in classical
structural analysis, the question posed here is not:
which deformation, internal stresses etc. result from
a certain known loading, but rather: what are the
required trajectories of the end points of a beam that
would produce a certain required deformation.

In [5] a solution was found using an integral power
series method. The results obtained there art
formally equivalent to those found here. But the
expression used for the nonlinear curvature relation
used there is different from the expression used
here, as will be explained shortly.

One final main consideration is that it is important
to arrive at straightforward expressions for the
required quantities, since this would allow operating
the manipulator arms on-line.

THE LINEAR SOLUTION

The problem considered here is that of a beam
supported by two end-effectors as shown in Figure
(1). The boundary conditions are such that no
vertical deflection, relative to the end-effectors, is
allowed at either beam end and no axial force should
be imposed on the beam. The end-effectors can
perform plane motion, including translation in
xandy- and -directions as well as rotation about the
axes SR and S The end-effectors are mounted on
the ends of the robot arms, not shown in the figure.
The end-effectors should not allow any motion of
the beam in the transverse (y-) direction. This is to
avoid the beam slipping sideways from the
end-effectors. The beam is assumed to have
constant, warping-free cross-section. The loading on
the beam consists of two end moments initiated
through rotation of the end-effectors as will be
discussed later.

For this configuration the elastic line of the beam
is governed by the equation:

Elx(x) =-M, (1)

where E is the modulus of elasticity of the beam
material, I is the 2nd moment of area. of its cross-

section about the y-axis and x is the curvature of
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the deflection curve. In the linear (small slope) beam
theory the curvature is approximated by:

X )=y’ ()=(tan"! w'(x))’ = (W'(x))'=w"(x), (2)

where y is the angle of the tangent to the elastic
line, leading to the well known beam equation: -

w" (®) =- M/EI 3)
- Introducing the following dimensionless quantities:
¢ = x/L; w(x) = w(x) / L; m = ML/EI

eqn. (3) can be written as
w, () =-m 4)

right eod—cffector left ond-effrchor

]

¥
_ s £ 2 st
H F
axs of n/hlﬁu"‘l . L |‘k
of end-effector l
2,9

Fig. (1) Probles and axes definition for besm, right and left end-effectors

Figure 1. Problem and axes definition for beam,
right and left end-effectors.

where w, (£) denotes the "zero" (linear)
approximation of the elastic line as opposed to the
Ist and 2nd approximations which will follow.

Integrating eqn.(4) twice and satisfying the
boundary conditions

w(0) =0 and w(l) =0 (5)
(where the subscript "o" is omitted here since these
boundary conditions need always, ie. for all

approximations, to be satisfied), the deflection of
the beam is given by

w, () = 2'21(5-52) 6)

The beam in this case will deflect in an arc of a
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circle with the constant, dimensionless radius

p=pl = -1/x (§) = m @

The beam will be subject to uniformly distributed
bending moment along its length with a maximum
deflection at the middle of m/8.

The dimensionless reduction in the projected length
of the beam can be calculated from the formula:

3°=}ﬁ'2d5

s 2
yielding 8 = %1;

THE FIRST APPROXIMATION

The previous solution is only valid for small slopes
(which in most cases are associated with small
deflections). For larger slopes, the curvature - in the
absence of axial forces [3] - 1s given by:

X (8) =(tan™' W' (B)) =w"" /(1 +W'?) ®

leading to the nonlinear equation

w(l+wd)l=-m )

It is worth mentioning here that the form of eqgn.
(9) differs from the form normally encountered in
the literature (e.g. [5-8]), namely

X&) =w" (€)/ A +w?(E)*P (10)

The difference is attributed to the coordinate
system used in each case. The system used in eqn.
(8) is the so-called material or lagrangian system ,
while that in eqn. (10) is the space or eulerian
system, both systems being attributed to
Novozhilov [9]. The expression in egn. (8) takes into
account that the beam was initially straight and then
bent in the given shape, while eqn. (10) does not.
This point is discussed in more detail in [10]. We
will adopt eqn. (8) since this system of coordinates
1s more convenient for the problem at hand.
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In order to find a better approximation for the
deflection of the beam for large slopes, we start from
equation (9) and expand the binomial term in
parentheses up to first term, yielding

w(1d+w?)=-m (11)
or, rearranging,

Lo |ty e
wii=-m+w, w, (12)

which is valid as long as -1 <w’ < 1, i.e. for slopes
less than 45°. The subscripts "o" and "1" in eqn. (12)
denote the zero (linear) and first approximation,
respectively. A scheme which is basically a
successive substitution iteration [11], is used to find
higher approximations. Inserting the linear solution
from eqn. (6) into the r.h.s. of eqn. (12), integrating
twice and satisfying the boundary conditions (5), we
arrive at an expression for the 1st approximation of
the deflection, namely

3
W,(5)=W,,(E)+%(£-3e2+4z3—2e‘) (13)

with

- = m’ 2 3
WI(E)-W,,(E)+§(1—6E+12€ -88) (14

and

3
»T»"l(z)=W",,(E)+—“2‘Z(—6+24e—24&2) (15)

From (14) the slope at £ = 0 is
7 0)=T (1T (16)
: 2 12

Hence for a given slope y, at ¢ = 0, i.e. tan
¥ = ﬁ'l(O), the required (dimensionless) momentcan
be calculated from equation (16) which is third
degree in m, with a positive discriminant, i.e. it has
one real and two complex conjugate roots. The only
real root of (16) with the Lh.s. equals ¥, can be
explicitly given by [12]:
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L 3 3
m={12vo+8.l 1+(-3%)’} 3+“”°"8*l 1+(—'2"2)2;’ (17)

This equation determines the end moment
required to deflect the beam end by an angle ¥,.
For the problem under consideration one is mainly
concerned with the kinematics of the manipulator
arms, while, on the force side, it should only be
ensured that the end-effectors are capable of
exserting the required forces. Having determined m,
from eqn. (17), other relevant quantities can be
directly calculated. The dimensionless reduction in
length is calculated using the expression [10}]:

0
8, = [w,2dg (18)
1
yielding
-— - 4 1 m2
3 =3 pMopl W1 19
! °+48(5+168) (9

The expansion of the nonlinear term in eqn. (9)
was intentionally restricted to the first term, since
this leads to the 3rd degree equation (16), for which
an explicit solution can be given. With only one
more term in the binomial expansion we would have
arrived at a Sth degree equation with no possibility
of giving explicit expressions to any of its roots.
Indeed, the given real root of the 3rd degree
equation can be used a starting value for roots of
higher order equations. as will be done with the
following 2nd approximation.

Before turning our attention to the second
approximation, we examine eqn. (14) more closely.
It can be put in the form

1-3

w, (€)=w, (§) *3We (3]

This equation is in formal agreement with the result
arrived at in [5], according to which the slope in the
case of large deflections is a power series in the
linear solution, thus validating the procedure used
here.
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THE SECOND APPROXIMATION

In order to further improve the accuracy of the
solution for the deflection, a second approximation
is sought. It is obtained by using eqn. (12) again,
however with the first approximation inserted on the
r.hs., namely

-

- ~"2
Wi =—m+w,

W, (20)

This method of successive approximation was
applied to the problem of post-buckling behavior of
bars and found to give very good results, as
mentioned earlier.

Integrating eqn. (20) twice and satisfying the
boundary conditions yields

40

5
ﬁ,(£)=61(£)+—;‘3g{5—se2+-3—-£’-2oz‘+1655-%§e‘}+

m’

_TE2 4 9RE3 4, s_ 6, %5, 8
1552{5 TE*+28E°-T0E*+112E° -1128°+64E" -16E°} +

+

m®
41472

B

{§ —957'_+48E3-1685‘ +403.2 E°-672E% + 7687

' —576E8+256E°-51.2£9) (21)

The expressions for w,” (£),w,”” (¢) which may be
obtained through straightforward, though lengthy
manipulation are omitted here for brevity. Here
‘again the slope for the large deflection case can be
expressed as a power series, namely

- L%k 5 j = -
Wy @)=, (©+ 37, @) + 5 7‘5“517“’09‘5)

The dimensionless reduction in length is given by

o 2 2
62=91_(1+£+£‘:+£+ ms
24 10 48 432 44724 22)
mlO 1 m12 ml4 m16 )

+
53914 995327 33841100 2723210000

The slope w’,(0) at the beam’s left end is given by
the expression
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ﬂz +£‘_) 23)

= () =3 (0 m® 1
= — +
A A TAT
For a given slope at ¢ = 0, 1t would 1in this case be
necessary to solve egn. (23) to obtain the
corresponding required moment m. This can only be
done numerically, since the equation is of the 9th
degree. The obvious choice to converge directly onto
the required root is to use the root as given by eqn.
(17), corresponding to the first approximation, as a
starting value and improve it through iteration using
eqn. (23) without a need to solve for all its roots. In
fact, for an end-slope angle of up to 30° the error in
the value of m as given by eqn. (17) and that
obtained by solving eqn. (23) iteratively is in the

order of 2%; the corresponding error in & is also of
the same order of magnitude. Beyond this angle,
very few iterations would be required to obtain m
with a high degree of accuracy.

KINEMATICS OF THE END-EFFECTORS

The required deflection of the beam will be
introduced through moving the manipulator arms
which carry the end-effectors. The total motion is to
be divided into several steps to ensure stepwise
synchronization between the performed transnational
and rotational movements so that they are always
consistent. The motion should be slow enough to
avoid dynamic effects. The manipulator arms will
step through from the original to the final position in
steps of, say, 10°. This will be accomplished through
successive MOVE instructions to the manipulator
arms. The coordinates for the (k+1)-position will be
given relative to the previous k-position.

Figure (2) shows two consecutive positions of the
right manipulator axis SR corresponding to the
end-slope angle of the beam right end of ¥, and

¥ ;1, respectively. The coordinates of S,ﬁl relative
to SRk can, after elementary geometrical
manipulation, be given by the values triple:

x-travel:

%.;-%,=L(8,,,-8,)/2+R(cos, -cos¥,,,) (24)
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y-travel:

. ;kq _}-’sz(Sin'I’k+1 _Sinll’k) (25)
rotation:
‘I’kq —q’k=Yk (26)

; gt brss glis
st / \

G \
" R, \__

initial oxis of beam

Fig. (2) Two consequtive positions ( k and k+] )
R
of S

Figure 2. Two consecutive positions (k and k+1) of

SR

where, +y,is the increment of the slope angle at the
beam right end.

These coordinates are given in a system of
coordinates fixed to, but not rotating with, the
manipulator rotation axis. These coordinates produce
the mode of bending shown in Figure (3-a), where
both ends of the beam are kept on the original axis,
i.e. without change in the vertical level of its axis.
Another mode of bending may be thought of in
which the tangent to the beam at the point of
maximum deflection (at midspan) does not change
its level, i.e. the lowest point of the beam is always
on the original axis of the beam, as shown in Figure
(3-b). This can be achieved by increasing the
y-travel by an amount corresponding to the middle
point deflection of the beam given by:
for the linear solution:

w,(E=0.5) = i;‘- 27)

for the first approximation
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5T e
g 28
w, (£ =0.5)=w,(£ =0.5) 193 (28)

and finally for the second approximation

s +-—-—— (29)

%,(E <0.5) =, (£ =0.5) + (1 + 16 =

1152

beam’s or(y/'lm( position

b) g 1
beams original position i

Figure 3. Two possible modes of deformation.

THE FORCE REGIME AT THE BEAM ENDS

The contact between the manipulator end-effectors
and the beam needs some consideration. The
loading at the beam ends is assumed to be consisting
only of the bending moment M. It is virtually
impossible to achieve a pure moment loading exactly
at the very end of the beam, without introducing
other force side-effects. Assuming a tight fit between
the beam and clamp, the pressure distribution
between the two bodies in the rotated position will
roughly be as shown in Figure (4-a), with the result
that the beam is actually loaded by two resultant
forces, a small distance apart. The portion of the
beam subjected to pure bending moment being the
unsupported span of the beam. Since the analysis
assumes that no axial forces are to be present, a tight
fit would violate this assumption, rendering the
beam statically indeterminate, and possibly resulting
in buckling of the beam.

To avoid this, very small clearance should be
allowed for between the end-effectors and beam,
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~ allowing for sliding motion between both..In this
- case the contact zone will be as shown in Figure
(4-b). This has two effects. The first is that a
difference in inclination between the beam and
end-effectors will occur, as denoted by the clearance
angle in the figure. However for small clearances this
angle can be kept very small, in fact not exceeding
few tenths of a degree. Even with large clearances,
this effect can be accounted for by adding the
clearance angle to the rotaton angle of the
end-effector as calculated by eqn. (26). The second
effect is that, again, the beam is practically loaded by
concentrated forces, with some small friction forces
at the contact edges.

b)

Figure 4. The contact between end-effector and
beam.

All these effects causing deviation from the ideal
assumed loading case will have no detrimental effect
on the results. In fact there are no supports that
qualify for being able to satisfy any ideal support
requirements. According to St. Venants’ Principle
[13], however, the difference in effect of two
different, yet equivalent, groups of forces is confined
to a "small" region in their vicinity; far away from the
point of application the effects of both force groups
become equal. Since we are interested in the global
behavior of the beam, the effect of this non-ideal
support condition can be safely neglected.
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EXAMPLE .

The example given here is to present a typical case
where the deflection of an aluminum bar is treated.
We consider a beam having a rectangular cross
section of 2x0.4 cm and a length of 50 cm, with the
following material properties [14]:

Modulus of elasticity E = 69 GN/m?

Elastic limit 230 MN/m?

Density = 2770 kg/m®

Table (1) shows the § -,y -travel and the rotation
of the rnght end-effector for the different
approximations for the mode of bending shown in
Figure (3-a), using eqns. (24-26). The table shows, as
expected, that for the larger angles the second
approximation should be used as otherwise large
deviation between the actual and required position
of the end-effector would occur leading to increased
forces on the end-effector and/or beam. For example,

the error in the x-travel between the linear and 2nd
approximation is 7% and 16.85% for the rotation
angles 30°° and 40°, respectively. On the other hand
it is not necessary to introduce higher degree
approximations since the differences would, in this
example, be a fraction of a millimeter, and will not
have any appreciable effect on the overall behavior
of the beam. It is also noted that the y-travel
decreases as the degree of approximation becomes
higher. This is to be expected, since ignoring higher
terms usually adds stiffening to a structure.

- Table 1.
degree of approx. | x-travel (cm)|y-travel (cm)|rotation (degree)
"0" approx. 1.003
1st 2 0.986
e Ll 1.684 20°
2nd approx. 0.983
"0" approx. 1.574
1st approx. 1.499
ppre 1,580 30°
2nd approx. 1.471
"0" approx. 2.545
1st i 2.308
b o 1428 40°
2nd approx. 2.178

This phenomenon is also noted in dynamic
problems. For this example the bending stresses in
the beam are approximately one order of magnitude
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less than the elastic modulus, so that the beam will
not suffer any perrnanent deformation. The required
moment M that should be applied by the
end-effectors has in this case a maximum value of
25 N.m.

CONCLUSION

The process of bending a beam up to large
deflections using a pair of manipulator arms is
presented. Since large deflections were allowed,
. solution of the nonlinear deflection equation is
found using successive approximation. It was found
that this method agrees formally with solutions
obtained before using integral power series. The end
slopes, end moments and the reduction in length
were all calculated. It was further found that the
linear solution would lead to relatively high errors in
calculating these quantiies. More accurate
expressions based on a second approximation were
derived. The kinematics of the manipulator arms’
movement are investigated together with aspects of
the end fixation of the beam.
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