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ABSTRACT

A mathematical model governing the inelastic behaviour of imperfect, restrained beam-columns is
developed. The model incorporates also residual strains. The members are composed of arbitrary
thin-walled cross-sections. Geometrical joint and member imperfections are included in the analysis.
Spatial loadings, displacement and rotation springs are employed. Minimum total potential energy
principle is used to develop the equilibrium equations. Material and geometrical non-linearities are
considered iteratively.Comparison with the European Buckling Curves for struts is given. The
deviations due to impr fections, residual strains and inelastic behaviour from the theoretical elastic

stability theory for

stically connected columns are demonstrated.
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INTRODUCTION

The stability of framed steel structures depends
pumarily on the stability their compression
members.

In fact, a perfect elastic strut does not exist. The
developed European Strut Curves, which are
supported by enormous theoretical and experimental
works, take into account the imperfections, residual
strains and the inelastic behaviour of compression
members [1,2]. Shear effects were proved to be
small in compression members [5]. On the other
hand the end conditions affect their behaviour
significantly. The influence of member
imperfections and joint properties on the elastic
behaviour of space frame member is presented in
[3]. Elastic stability expressions for elastically
connected columns were developed in [4]. The aim
of this study is to develop a numerical technique to
determine the inelastic behaviour of imperfect beam-

columns spatially loaded and restrained when

considering  residual  strains.  Spatial elastic
displacement and rotation springs, distributed and
concentrated, are employed. The equilibrium
equations are generated using the minimum total
potential energy principle. Geometrical and material
non-linearities are considered iteratively.
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Comparison between the proposed technique and
the European Strut Curves is made.

The effects of imperfections, residual strains and
inelastic behaviour on the elastic stability of
elastically connected columns are demonstrated.

EQUILIBRIUM EQUATIONS

The following assumptions are considered in the
present analysis:

1- Distortion of the cross-section during
deformations is not allowed.

2- Small deformations.

3- Only shear deformations due to St. Venant torsion
is considered.

4- The distribution of residual strains in the
longitudinal direction is constant along the beam
length. :

The longitudinal normal strain € and the St-Venant
shear strain 7y at a point (n,§,w) at a distance x
measured from the ‘origin are given from
differentiating the deformations of an arbitrary pole
of the cross-section (u,v,w,) due to external loadings
and those due to the member and joint
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imperfections (v, w,, ) as follow:

VIZ _ (Y'Z(ﬁo+6)) v"

1
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w2 - (z+y(B +B)) w"

’ ’ 1
+w oW+ =
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L g2y wer(1-a)
2

(1-b)
where, r i1s the distance to the middle line of the

thin wall and (y,z) are the local coordinate system
before rotation.

The equilibrium equations are derived using the

minimum totai potential energy principle. For a
beam segment cut from a deformed system, the
edge forces must be in equilibrium with the internal
stress resultants and the external loadings. The

internal potential II, is given as:

= f (fo d +ftdy)dA+—-(cyv +e,W, +ca.ﬁz)}dx (2-a)

where (c c,) are the distributed displacement spring
constants and cg Is the distributed rotation spring
constant.

The external potential II, is:

- f(py.vpy+pz.wp‘+px.up‘)dx
X
-(Ay.v+AZ.w-' x.u-My.w’+sz'
k2
+M.o-M,.B )x1 (2-b)
where p,A,M are the applied loads, edge forces and
edge flexural and warping moments in the three

directions.
The total potential energy = is:

O=10 +10, (2-¢)
It could be written in the form:

5 x,
O - [@Q,.+Q.+Q,)dx+Ry |

f Q. dx+R| (2-d)

Xy
where Q and R are functions of deformations as
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follows:
Q=0& V¥, ¥,¥")
R=R(x ¥, ¥)

¥ presents global deformations (u,v,w,(). The
system state of equilibrium requires that the total

potential energy is to be minimum, i.e. §II=0.
According to [6], and using Eq. (2) yields

SII= [aq dx +6R|

X

=f[‘;_Q aQ) +(2y7 5 v, dx

E
BQ aQ Y 5
3y’ ( =)+ aq;] ¥
0Q + =0 .
22 . XKy ®

This expression is zero if, and only if each
expression between brackets is zero, hence

29 49, (aQ)

=0 Euler differential

ay oy’
equation
9Q _,9Q oR.x
P (aw) aq:]"*
aQ 5 edge conditions (4a-)
oy” aw 1

Using Eq. (1) together with the expression of the
first variation of the potentials for each of the
deformations (u,v,w,8) and upon applying the stress
resultant expressions, three second order differential
equations, one first order equation and 7 edge
conditions are obtained. ‘

Seven 1% order equations are formed by
substituting the differentiations of the edge
conditions into the 2™ order differential equations. |
The yielding system of equations could be
transformed into a linear system by replacing the
stress resultants in all terms containing their product
with displacements, with those determmed m a
prev10us ste;‘) due to the first order theory (N
MZ and M

The eqmrlbnum equations due to the order
theory considering imperfections and distributed

an
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displacement and rotation elastic springs are given
as:

Ay’ a Cy (V'chﬁ) - py -

) MZ, = - Ay + NXI (V0+V)’ + Py (Ypl—sz (ﬂo * 6))

A =c,(W+Y,B)p,

M, = A, - NS (wsw)’ - p, (2, +3, (B, + B)

My’ = - ¢y (v-Z, B) Zoy+C,(W+y,B)y 1+ B
I ’ I, ’ o ~
5 My (V0+V) - MZ (W0+W) + py zp‘—pzypz

Dy (T, (W4 W), (v, +V))

M, =M, - M- M B8) T+ MU vy

I ’
+ M, (Wy+w) ' - p.w

Ay = - py (Sa-g)
where, the following abbreviated terms are
introduced:

y=y-z(B,+B), z=2+y(B, +B) (6)

STRESS RESULTANT DISPLACEMENT
RELATIONSHIPS

The beam cross-section is discretized into a fine
mesh. For each element i (x,y,z,w) the stress o; is

related to the strain ¢ through linear secant modulus

S.

1

0;=S; ¢ @)
By using the linear terms of Eq. (1-a), and
considering the residual strains €_, the total strain is
given as:
’ " . ;
ei=u—yiv'-ziw”-wi5”—eri (8)

S; is determined corresponding to ¢ from the
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column material relationship. 7
Integrating the stresses Eq. (7) along the cross-
sectional area according to the stress resultant
definitions gives: '

{K} = [D] {V} + {D_¢} %))
where,

{K} is the stress resultant vector, [D] is the nigidity
matrix of the cross-section properties, {V} is the
displacement vector and {D_} is the vector
determined from the residual stresses integrations
along the cross-sectional area.

On the other hand the St-Venant torsion moment
M+t is calculated directly according to the elastic
shear modulus G:

My =2 f 2GP2dAB =G1, 8  (10)
From Eqgs. (9) the stress resultant-displacemcnt
relations are expressed as:

{Vlgg = DI {K} - DI (D} (1D)

It is completed with the following new definitions:

Vi = (9, - 9y 9} (12)

CONCENTRATED LOADS AND SPRINGS

The stress resultants and displacement vectors
before and after the point of application of the
concentrated loads and springs are related to each
other through point matrix. This point matrix is
developed by applying direct equilibrium conditions
at the cross-section faces ] and J+1 of the deformed
beam-column. Hereby, concentrated displacement
springs Cy, rotation springs CCy and warping spring
C,, are considered. The point matrix is expressed as:
O d7x1 = Opdyu

And the stress resultants:
Ay = Ay, +C vz, -B)-P,

AzM =Azl +Cz(w+ycz. B)-P,
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Ax,,, i Al, = PX

MYM =MY: * CCY¢Y - P! (il’x)

M, =M, +CCé,+P,(Y,)

NL‘J A3 M‘l 3 CY(V Mgy B) (zc)')
+ Cw+y,.B)(Y) +CC,.B
+P,(Z,) -P,F,)

=M_,-C_p (13a-m)

SOLUTION TECHNIQUE

The beam-column is divided into parts; for each
part the field transport matrix is developed through
numerical integrations of Egs. (5,11,12). AT the
locations of concentrated loads or elastic springs, the
point matnx, Eq. (13), is applied. The resulting
system of lineanized equations becomes solvable
when it is separated into known and unknown
variables which are either displacements or stress
resultants according to the supporting conditions.

Inelastic behaviour of the material is considered in
an internal iteration loop The secant modulus of
each element of the ¢ .-sections along the beam
length is modified till « .vergence. Convergence is
achieved, when the difference between the internal
stress resultants (resulting from the integration of
stresses along cross-sectional area) and the external
stress resultants (given from the equilibrium
equations) does not exceed a predefined
convergence factor. In an external loop the loads are
increased incrementaly till the critical load.

NUMERICAL VERIFICATIONS

Example 1

In order to verify the accuracy and efficiency of the
proposed model the buckling curve is determined

for the column of I-shaped cross-section, Figure (1).
The initial member imperfection is taken a 2™
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parabola, with a maximum midspan displacement v,
equal to:

Vo= (where l=span)
03éy,
me‘“’z\_t_/xﬁ'“ 9%
“\'—‘_"T‘_"" =+ 03€y

Figure 1. Example 1, Cross-section, imperfections,
residual strains and distributed springs.

The residual strains are assumed as depicted in
figure with a maximum value of 0.3 of the yiel
strain. The material property is linear elastic -ide
plastic with a yield stress of 2.4 t/cm?, E = 210
t/cm? and p = 0.3. Distributed displacement sprin
c, and twisting spring cg are initiated to ensure
inplane failure of the column. The buckling curve;
buckling load versus slenderness ratio, is plotted in
Figure (2) in a dimensionless form such that:

-
N

where, N is the ultimate load capacity, Np is the
plastic normal force, and N, is the Euler buckling
load. |
The European Buckling Curve is plotted as well,
in the same figure. Values of the European Strut
Curve fall exactly on the present analysis model
results. This is true for all slenderness ratios.

Example 2

The following example is intended to demonstrate
the effect of "real world" conditions in comparison
with the "idealistic" assumption.
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The H-shape column cr s-section of Figure (3) is
msidered. Imperfe .ons, residual strains,
stributed springs and material properties are similar
) those of the first example. In addition, two
ncentrated elastic rotational springs CC, exist at
oth ends of the column. Results are compared with
e theoretical elastic stability expressions defined in

figure 3. Elastically connected column of example
mperfections, residual strains and distributed

orings.

he elastic rotational spring CC, is taken similar to

Ref. [4] as:
: EI '
.C, =¢ Twherc§ was taken equals to 10.

I'he corresponding normal force parameter q defined
1 Ref. [4] was:
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Figure 2. Bukling curves for the column of example 1.
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Figure (5) shows the normal force parameter q as
developed in [4] and in the present analysis. The
ratio between the actual value of q as developed by
the present model and the theoretical one given in

[4] is 0.84 and 0.64 when A is 2.5 and 1.68

respectively. For smaller values of A, q (theoretical)
is not practically applicable.

CONCLUSIONS

A mathematical model representing the inelastic
spatial stability of restrained imperfect beam-
columns is developed. Influence of residual strains,
arbitrary  cross-section and arbitrary matenal
properties are included. The comparison with the
European Buckling Curve proves the accuracy of the
model. Applying the present analysis on elastically
connected columns shows the necessity of
incorporating inelastic behaviour, imperfections and
residual strains in designing such columns. With the
aid of the present mathematical model and the
corresponding computer program, better design
formulae applicable to real column conditions cloud
be established.
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Figure S. Normal force parameter q = N /N, vs. selenderness ratio A.
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