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ABSTRACT

The problem of heat and momentum transfer between a high temperature plasma and a small
diameter spherical particle has been studied using a two-temperature, chemical, non-equilibrium
approach, incorporating rarefaction and particle charging effects. The most important effects which
are not present in ordinary gases such as, strongly varying plasma properties, dissociation,
recombination, radiation and non-continuum situations has been taken into account in addition to
the particle surface charging. A physical model is introduced to represent flow and energy transfer
of heavy particles and electrons. A study was performed using the proposed physical model to
determine the isotherms of both electrons and heavy particles, as well as, the pressure distribution,
the drag coefficient, the tangential velocity, and the heat flux at the sphere surface for particles of
diameter 20 micrometer immersed in 13,000 °K Argon plasma. The results of the heat flux are
compared with Chen-Pfender’s work [1]. It is concluded that the effect of departure of plasma from
thermodynamic equilibrium should be taken into consideration nearby the sphere surface. To
represent the flow field around a sphere, it is found that a domain of about twenty times the sphere
radius is enough to simulate the boundary layer around the sphere. The one-fluid, one-temperature
model [1] underestimates the heat fluxes from plasma to the sphere surface because it overlooks the
contribution of electrons. Compared with Chen-Pfender’s previous work [1] using one fluid one

temperature model, the difference in calculated heat flux is about 20%.

Keywords: Plasma flow, Flow around solid spheres, Fluid flow equations, Finite difference.

INTRODUCTION

Thermal plasma  processing offers interesting
possibilities for the development of new
technologies and for new processing routes. Thermal
plasmas with temperatures typically in the order of
10,000 °K provide extremely high heating and
quenching rates for particulate matter injected into
such plasmas. Under these extreme conditions,
unusual materials or coatings may be produced with
interesting properties.

Particles injected into a thermal plasma will
experience a number of effects which are not
present in ordinary gases. Y.C.Lee, Y.P.Chyou and
E.Pfender [2] described in a comprehensive review
the most important effects which have to be
considered. Some of the various effects which are

known today are listed in Table (1) [2].

Table 1. Effects Involved in Particle Heat and
Momentum Transfer in a Thermal Plasma [2].

(1) Internal conduction.

(2) Unsteady condition.

(3) Modified transfer coefficients due
to strongly varying plasma properties.
(4) Non continuum effect.

(5) Radiation.

(6) Parucle shape.

(7) Particle charging.
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ESTABLISHMENT OF GOVERNING
EQUATIONS g

- Internal Conduction

The Biot number, defined as the ratio of
convective to conductive heat transfer, serves as a
criterion for determining the relative importance of
heat conduction within a particle. If Bi<<0.1, internal
conduction is relatively high, ie., temperature
variations within the particle are negligible.

Bourdin et al [3] proposed a method for calculating
the Biot number assuming that conduction is the
governing heat transfer mechanism (small Reynolds
numbers) for particle heating in the plasma, i.e.,

Bi =

7l

where K is the average thermal conductivity of the
plasma across the boundary layer, and K_ is the
thermal conductvity of the particle material . It is
safer to take the upper limit of the critical Biot
number of the particle during its flight as:

K(T,,

Bi_ =2 *
“ K (Toae)

Where a factor of 2 incorporates the convective
influence; and thermal conductivities of the particle
and the plasma are chosen with respect to estimated
average temperatures.

Based on this criterion the internal conduction
resistance of the particle is negligible if Bi_; <<0.1.
For this case, a simplified approach can be used to
calculate heat and mass transfer.

- Pseudo-Steady-State Situation

If the temperature and velocity fields in the
boundary layers surrounding a particle de not relax
fast enough when the particle is exposed to
drastically varying temperatures and velocities, then
the so-called pseudo-steady-state conditions are not
reached, i.e., steady-state expressions are not valid.

Bourdin et al [3] studied this problem by
considering unsteady heat conduction to a particle
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under suddenly changing plasma conditions. They

found out that the relaxation time is approximately

1.0 microsecond, which is far less than typical

residence times (1.0 millisecond). Based on this
finding, they concluded that the steady-state
expressions for describing plasma to particle heat

transfer are still valid, and they can be used for

calculating heat and mass transfer coefficients.

- Temperature Dependent Properties

In reality, there is a large temperature drop across
the boundary layer so that correction factors for
convective heat and drag coefficients derived for
constant properties are required. For heat transfer,
the formula for the Nusselt number was modified as
follows:

(i) Vardelle et al [4] gave a special attention to the
effect of steep temperature gradients on the
variation of the property values of the plasma
across the boundary layer of the particle. These
were evaluated by taking the integral mean of the
property between the particle surface temperature
and the temperature of the plasma calculated as
follows :

Te

Ke™ G _T )fK dT

A similar equation was used to evaluate p avg and
Payg: The Nusselt number was estimated using the
Ranz and Marshall equation (2):

Nu,,=[2+0.514 Re,]

avg
Where the dimensionless numbers are defined by

average properties, i.e.,

Pavg WD
Reavg= V; :
avg
h
Nuwx KDP

(i1) Lewis and Gauvin [5] upon experimental work
proposed :
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Kf avg v_
Where k is the thermal conductivity and » is the
kinematic  viscosity. The subscript f refers to
properties corresponding to the film temperature
which is the average between the surface and free
stream temperatures, and the subscript o refers to

properties  corresponding to the free stream
- temperature. Nuavg is given by Ranz and Marshall
equation. Ahmed, A.M. [6] has obtained an

experimental value of n = 0.15.

(ii1) Fiszdon [7] takes the Nusselt number relation
given by Bird et al [8] with a correction
coefficient given by Kimura et al [9] and
suggested the following formula for the Nusselt
number:

= [2.0+0.6 Re,” "3][ he s

w w

Where p is the dynamic viscosity. The subscript
w refers to properties corresponding to the wall
temperature. The subscript o  refers to
properties corresponding to free stream
temperature.

(iv) Lee et al [2] proposed the expression

13 Pe M o6r Cpmos
I—1 [C —=]

Pw My pw

= [2.0+0.6 Re,” Pr,

Where C is the specific heat. This expression
has been fitted to the data derived from
computer simulations.

(v) Sayegh and Gauvin [10], in a numerical analysis,
solved ‘the steady state continuity,
Navier-Stokes, and energy equations in the
stream function and vorticity formulation in
spherical coordinates using finite difference
techniques. A general heat transfer coefficient
correlation has been derived that applies equally
to constant and variable property flows.

It 1s found that large discrepancies exist among
various approaches for calculating heat transfer
coefficients. This finding already indicates the need
for further studies, especially for particle heat and
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-momentum transfer under various plasma conditions
-in order to develop reliable relationships. At present,

there are almost no experimental data available.
Thus, computer simulation of the plasma flow over
a sphere remains an important tool for determining
heat transfer coefficients .

- Non-Continuum Effect

The non-continuum effect on heat transfer has
been studied by Chen and Pfender [1] in the
temperature jump regime. They found that the
non-continuum effect becomes substantial for small
particles. Therefore, it is crucial for modeling
associated with thermal plasma processing when
small particles ( < 20 micrometer) are involved. This
effect can be taken into account using different
accommodation coefficients for electrons and heavy
particles [1].

- Radiation Transport

Radiation loss by electrons is mainly due to
Bremsstrahlung radiation. Radiation losses from
particle are negligible except for particles with
surface temperatures exceeding 2000 °K immersed
into plasmas (for example, Argon or Nitrogen) at
temperatures below 4000° K [3].

- Particle Shape Effects

Both particle shape and orientation may have
large effects on the rate of heat and mass transfer.
There are, however, no suitable correlations available
to take these effects into account, in particular for
plasma heat transfer.

- Particle Charging

A particle injected into a thermal plasma is always
negatively charged due to . different thermal
velocities and mobilities of electrons and 10ns.

The dimensionless surface potential (<0) is given

by [2]

1
= ol : e) (—)]

Where ¢p, T,, T, m, and m; are the surface
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potential (< 0), surface temperature, ion temperature,
electron temperature,, electron mass and ion mass;
respectively. The energy transport equations taken
from references (11) and (12) assume the following
forms:

For neutral atoms:

B *jump
e ) (1)
For ions:

(KBTMP) &
Qo ™12 (1-X_+0.5X))(2K T, )
‘/2um.

Lo sty g @)

For electrons:

T, . )
qe=ne£KB—2°n"i1’)——(2KBTe o) EXPK)  (3)

Recombination between ions and electrons:

KT )
Gcon =Ty o) Eexp(-X) @)
‘/Znng
Where, the q’s represent the heat fluxes, Tjump and
i jump 1€ the jump temperatures, T is the
particle surface temperature, the m’s are the
_:molecu‘lar masses of the species and E, is the

recombination energy.

ANALYTICAL MODEL AND THE
GOVERNING EQUATIONS

The basic assumptions of the model are:

(1) The flow is steady and axisymmetric;

(2) Gravity and viscous dissipation have been
neglected;

(3) There are no superimposed fields (neither
electric nor magnetic);

(4) Electron diffusion is controlled by ambipolar
diffusion; .

(5) Radiation losses are included in the electron
energy equation;

(6) Electron-electron-ion collisions are the only
process for volume recombination.
Then the governing equations can be written as
follows:
- Conservation of Mass Equations
Continuity Equation for All Species :
v(pU)=0 (5)

Where p is the density of all species which can be
taken equal to the density of heavy particles because
of the low electron number density and its light
mass, and U is the velocity vector.

Continuity Equation for Electrons :

v.pe U=v.p D, V(pJp) + m_ 1, (6)

Where o, D m_and 1, are the electron mass

amb>

density, ambipolar diffusion coefficient, electron
mass and the ionization rate , respectively.
- Momentum Equations

r - Direction Momentum Equation :

L
P for rdd r or
ad aux 2“
Ippp—=-2by
+ar[ L (V.U)]
19, .9 Y 1% %)
Ll iyl
(g2 % 4u,_ 20000
r o rod r r
du
+rcot6—‘2 —%)+——-mte |
o r r 00

6- Direction Momentum Equation :

u ,
T u)-2Ewuy)

d. .3, U 10U
+8r[p(r5;(_r-)+;36)] | (8)
+_E[2(_1.% o g,coln
r r do

9 Yoy, 10
BE(Dr——]

JcotB
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“In Egs. (5) to (8) the usual symbols employed in
fluid mechanics are used; r and 6 are the radial and
circumferential coordinates,u, and uy are the velocity
components in these directions, respectively; P and
p are the gas pressure and dynamic viscosity.

- Energy Equations

- Heavy Particle Energy Equation :

v.[% Kgn, TU] = VKVT+Q,  (9)

Electron Energy Equation :

v’.[gKB n, T U] = VK,VT,-E, 1,-R-Q, (10)

Where Ky is the Boltzmann’s constant and ny;, n,,
T, T,, K, and K_ are the number density of heavy
particles, number density of electrons, heavy
particle’s temperature, electron’s temperature,
thermal conductivity of heavy particles and thermal
conductivity of electrons respectively, E;, R and Q
are the ionization energy, radiation loss from
electrons and energy transfer from the electrons to
heavy species. :

The energy transfer from electrons to heavy
species through collision processes,Q ., are the sum
of the electron-ion energy transfer, Q. and
electron-neutral energy transfer,Q ., [13].

i 2n ne* [81:me]m T.-T
® 3m(4ne)? KpT, T,
11
111[9(41:501%;1;)3] G

4nne

Where e is the elementary charge and m,, is the
mass of heavy particle and ¢, is the permitivity of
vacuum. g

i e
my
8nm (12)
H[——1"%0,,
Ko

e
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Where «,0,, are the degree of ionization, and the .
electron-neutral elastic collision cross section
respectively.

Radiation loss from electrons can be assumed to be
due to Bremsstrahlung radiation [14].

R =1.69* 102 n_n T /2 (wau m?®) (13)

In Egs. (5) - (13), spherical coordinates (r,6,%) are
employed, and both steady state(d/0t=0) and
axisymmetric (3/0®=0) are postulated.

- Equation of State

Considering Argon as an ideal gas, the pressure of

the plasma is given by :

P=pRT (14)

Where R is the gas constant .
-Boundary Conditions

Far from the sphere (r=o0), the free stream
conditions are :

a=Qg , U=-U,c0s(f), ug=-u,, sin(f),

T-T, and T=T.., (15)

Where the subscript o refers to the free stream
conditions.

At the sphere surface, slip velocity and temperature
jump boundary conditions are used as:

£ o
o2y s (16-a)

u,=0 impermeable surface B.C. (16-b)

T:T +Q 2Y _A_
* Y a y+10 Pr

aT
—_ 16
o (16¢)

T -1 +2v  * T (16-d)
= "' 010 Pr, ar

Where A, A, f, a, and subscripts s and w denote the
mean free path length of heavy particles, of
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electrons, momentum and thermal accommodation
coefficients, and jump and surface conditions,
respectively. Note that " a " is assumed to be 1 for
the electrons. Here, the boundary condition for the
electron density has been derived using the
following approach;

14

<c> Do
4 7.2

%“r‘ (16:¢)

where «a and <c> are the degree of ionization and
the average thermal velocity, respectively .
Along the axis of symmetry (§=0° and 6=180°):

du
—Q‘-"-=0, —=£=0, uy=0,
a0 20 ”
ar ., 9T,
» o

NUMERICAL DATA:

For all the computational work described in this
study, the particle diameter is 20um, the thermal
accommodation coefficient, (a), is taken as 0.8
according to reference (1), the momentum
accommodation coefficient, (f), is 0.9 according to
the same reference, T, is 13000°K, and T, is
13000°K too. The particle surface temperature T, is
1000°K. The Prandd number for Argon is constant
and equal to 0.651 whereas the Prandtl number for
electrons is found to be 0.644691.

The degree of ionization far from the sphere is
calculated from Saha Equation as the plasma is in
(LTE). Reynolds number is taken to be 1.0, or less
sometimes, and the specific heat ratio is equal to
1.67. -

METHOD OF SOLUTION

Normalization

The governing equations are normalized by
introducing new variables, properties and coordinate,

non dimensionalized in terms of the bulk conditions
of the gas and the sphere radius (D/2), thus:
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, u
pr=L == ul=—=
u . T
ug=— T*:l T, =—2
u T, T,
- (18)
»_ b ® Damb * __ u
Damb B
®/2) Db He
. K . K
K =—2 K'==—°

The new coordinate z is introduced in a way such
that r =e?, to represent radial distance. The new
dimensionless radial distance,z,allows exponential
increase in r for equal increments of z. Also, when
z is used, the radial spacing near the surface of the
sphere is kept small to improve the accuracy of
calculation, while still maintaining a relatively large
domain with a reasonable number of mesh points.

Linearization Method Of Difference Equations

For the numerical prediction method considered
here, the nonlinear equations were transformed from
their original partial differental form to a set of
nonlinear algebraic equations, thus, making them
amenable to a computer solution. To do this, the
flow field was first divided into a large number of
mesh points. The variables, at each of these points,
were approximated by Taylor series and the
derivatives were determined in terms of adjacent
points. The solution, then, consisted of satisfying the
difference equations at every lattice point. The
central difference method was used for all of the
internal points. With this method, the derivative is
approximated by the difference between points on
both sides of the point under consideration. Forward
difference and backward difference approximations
evaluate the derivatives in terms of two or more
consecutive points in the same direction, either in
front or behind the lattice point. These were used to
approximate the Neumann-type boundary
conditions. The general finite-difference equations,
accurate up to the order of h? are given in appendix
of reference(16).

Figure (1) illustrates the circular mesh used. It can
be seen that the divisions are smaller near the
surface of the sphere. This was necessary for
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obtaining accui'at_;evdescriptioh of the flow where the
- gradients are steepest. They go larger as r increases.

|=N+1

Figure 1. Circular mesh 6§ vs. Z.

Flow predictions are then based on the solution of
the set of nonlinear algebraic equations. This
solution can be obtained by iteration using the
following procedure :

(1) the equations are linearized based on the best
estimate for the dependent variables.

(2) the linear equations are "solved" to improve the
estimate for the solution.

(3) this " coefficient update cycle " is repeated until
the solution obtained satisfies the nonlinear
equations to a specified tolerance.

The accuracy of the linearizations used affects the
rate of convergence of the linear equation solutions
[15]. More accurate linearizations generally accelerate
the convergence rate at the expense of the time
required for the solution of the linear equation set.

Standard Linearization [15]: This
first-order-accurate linearization is desirable so that
solution of the linear equation set becomes simple.
A linear equation can be solved for a new estimate
of its variable, independent of other equations. This
new estimate of the variable can then be used in
another equation and so on. This linearization does
not accurately mimic the physics of the flow, with
the result that heavy under-relaxation is required to
avoid divergence.

Newton-Raphson Linearization [15] : If a more
accurate linearization is employed, such as a
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Newton-Raphson linearization, where nonlinear
terms are approximated by the first two terms of a
Taylor series expansion, for example, the uT product
results in :

uT =u°T +T°u -u°T® (19)

Where the superscript o denotes the values from the
previous updated cycle. Then, the linear equations
are coupled directly to each-other. The convergence
rates of the nonlinear set achieved through solution
of this equation set have been shown to be
significantly higher than those possible with the
standard linearization, i.e., the number of coefficient
update cycles is lower than that in the standard
linearization. Unfortunately, the increased
computational effort required to solve each coupled
linear equation set by existing means outweighs the
savings that result from the accelerated convergence
rate.

In the present study, we shall make use of both
the Newton-Raphson linearization method to "first"
linearize the algebraic equations, and the standard
linearization method to "secondly" solve the previous
coupled linear equation set. This permits the use of
both accurate linearization method and simple faster
method for conversion.

The Relaxation Procedure
Equations (12) to (16) can be written in a general
form as:

d(LD=f [¢(I+1,]),0(I-1.]),¢(LJ+1),¢(LJ-DI (20)

Hence, to find the value of the function ¢ at the
point (L]), the values of this function must be
defined for the four adjacent points. In other words,
to start the process, initial values for all the functions
at every mesh point in the grid must be assigned.
To satisfy the governing equations, new values of
the variable are then calculated with the aid of
equation (20). If the initial guess was very far from
the required solution, then direct substitution of the
new values in the grid can cause instabilities which
may lead to divergence of the solution from actual
values. To avoid this, the new value of the function
that is placed in the grid is chosen between the old
and the calculated values, thus :
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= do1g + WH(Peap - o) (21)

d’ncw

w is known as the relaxation coefficient. When w is
greater than unity, the method is called Over
Relaxation and if w is less than unity the method is
called Under Relaxation.

Either of two methods can be used to evaluate
equation (21):

(a) Richardson’s method where the old values for
all of the variables are used to evaluate ¢, or;

(b) : Liecbmann’s method where the new values are
used as they are calculated.

Richardson’s method was used in this study.

Usually, the selection of the relaxation coefficient
is based on the highest value that does not cause
instabilities .

In this study, three relaxation coefficients
(wy,w,,w3) were used for the degree of ionization,
velocities and temperatures. Small values of (wl,wz
and w;) were used at the start and then they were
permitted to increase every 20 iterations. to
accelerate convergence. The values of (wy,w, and
‘w3) at the start were 0.4, 0.4 and 0.5; respectively.

A computer program was written for the
- simultaneous solution of the governing equations by
the above iteration method. Direct substitution and
constant relaxation coefficients were applied
alternately on the mesh points to calculate the new
values of the varnables.

Computation Sequence

The number of iterations required to reach
convergence depends on the nature of the problem,
the relaxation coefficients used and on the initial
guess. Starting with a guess that was far from the
real solution for the condition under study caused
instabilities and required = the use of
heavy-under-relaxation coefficients which in turn led
to an increase in the number of iterations.

From a computation point of view, the direct effect
of increasing field size and reducing lattice spacing
is an increase in the computer memory and in the
time required per iteration. Decreasing the field size
may cause Inaccuracies and instabilities in the
. solution, especially at the rear part of the sphere.

No systematic investigation of the exact effects of
lattice spacing and field size on the accuracy of the
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solutions, in order to permit the selection of an
optimum mesh, was found in the literature.

In this work, where central difference is used, it is
believed that nearly squared cells are more suitable
to decrease instabilities. The increments in r and §
directions to make the cells nearly squared was
derived to be :

Az = In(1.+A06)

The location of the outer boundary can be
determined by trial and error on the basis of the T
distribution. Since it was expected that the radial
gradient (3T/dr) at the outer boundary should vanish
if the outer boundary is located sufficiently far from
the sphere, we increased r,, if the computed T
solution did not satisfy both T = 1.0 and ('T/9r=0.0)
criteria.

Numerical experiments of increasing r, were
performed until (3T/dr) becomes smaller than a
predetermined small number e. Figure (2) 1llustrates
this trial-and-error effort where e was taken as 107,
For the specified parametric values, it is seen that
choosing r, to be 19.14 times the sphere radius is
adequate.

The initial guess for velocities were the creeping
flow distribution. For temperatures :

T(L)) = (1 - €7)-0.0016 (22)
TLD= (1 -€™)-0.0016 (23)

where 6 is in radians.

Since the degree of ionization is proportional to the
electron temperature, the imual guess for a can be
assumed as: :

a(L)) = ay,(1 - e™)-0.0018 (24)

The convergence criterion in this study was based
on maximum absolute error in all variables. When
the change in these variables between successive
iterations was less than the tolerance, at every lattice
point, the computation process was stopped and the
required quantmes were calculated. The tolerance
was taken as 107
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adial temperature distribution for various m;‘er
ry locations of the spherical domain (angle=45")

hould be emphasized again, at this point, that
methods used above to accelerate or reach
vergence were very arbitrary. By no means, they
the fastest or the " optimum " ones. Because of
lengthy nature of the problem, it was ‘hot
le to investigate the methods of solution
ematically and come wup with definite
mmendations on the best method that should be

RESULTS DISCUSSION AND CONCLUSIONS

" A code using the proposed model is written and a
stem of program runs was performed and the
results are to be presented and explained below®

~ Figures (3) and (4) show the isotherms of heavy
particles and electrons respectively. The isotherm
distributions in each figure are determined by the
Cinterplay of the heat conduction and the imposed
convection.

- Ahead of the sphere, the heat conduction and

- convection are concurrent, therefore, the isotherm
distributions are dense to a certain extent there,
- while behind the sphere, the convection is in
opposite direction with respect to conduction and
hampers the heat transfer by conduction so that the
isotherms spread somewhat downstream.

The previous effects can be noticed in figure (4)
but it may be hard to recognize in Figure (3). This
is because in low Reynolds number regimes, such as
our case where Re = 1.0, the isotherms appear
symmetrical to a certain extent with respect to x=0.0.
The symmetricity feature is expected to be more
obvious .as Re is lowered. Complete symmetry is
achieved when Re=0, which corresponds to the pure
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heat conduction problem in a stagnant gas. The
effect of spreading the electron temperature
isotherms in the downstream region is remarked, but
not for the heavy particle temperature isotherms
because of the higher mobility of electrons than that
of heavy particles.
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Fig.(8) Heavy particle dimensionless temperalure
ﬁels around o sphere (1bar,Re=1,T/Tuw~1/13)
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Fig.(4) Electron dimensionless temperature field
around a sphere(1bar,Re=1,T./Tuw;=1/13)

Figure (5) shows the radial temperature distribution
for electrons and heavy particles at (=45° ). Except
near the sphere surface, the temperature of electrons
shows higher values than that of heavy particles,
however, both of the electron and heavy particle
temperatures decrease - slowly in the negatve
r-direction. Near the sphere surface, both of the two
temperatures decrease rapidly since the sphere
represents a sink of heat. Because of the higher
thermal accommodation coefficient of electrons than
that of heavy particles, the electron temperature goes
down to a lower value at the sphere surface than that
of the heavy particles.
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Fig(5) Heavy particle and electron radigl
temprature distribution (1bar,angle=4
Figure (6) shows the jum temperature
g jump p

distributions at the sphere surface for electrons and
heavy particles. The result for the present work for
heavy particle’s temperature is compared with gas
jump temperature given by Chen and Pfender in
reference (1). Chen and Pfender used one-fluid,
one-temperature model in their calculations. A small
relative difference can be noticed between the two
results. This difference is attributed to the use of
one-fluid, one-temperature model and conduction
potential jump boundary condition in
Chen-Pfender’s work, while in this work, the
temperature jump boundary condition is used.
Figure (7) shows the degree of ionization field
around the sphere. Asymmetricity with respect to
x=0 can be remarked simply. On the other hand,
Figure (8) shows the radial distribution of the degree
of ionization ahead (6=45°) and behind (§=135°) the
sphere. The two factors affect the degree of

ionization distribution, namely, the electron
temperature and convection. The degree of
lonization is  proportional to the electron

temperature, while the convective flow -carries
electrons in its direction. The curve of electron
temperature radial distribution can be divided into

two regions; the first region lies far from the sphere

and over which the electron temperature decreases
slowly with decreasing the radial distance; while the

second region lies nearby the sphere surface in .

which the electron temperature decreases rapidly
with high slope with decreasing the radial distance.
The two regions are connected by a smooth knee at
about six times the sphere radius.
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Ahead of the sphere (upstream), the convection
and temperature effects have opposite directions. In
the first region, the effects of convection overcomes
the temperature effect leading to increase in the
degree of ionization in the direction of the sphere up
to the knee. In the second region, the temperature
effect overcomes the convective effect leading to
changing the sign of the slope of the degree of
ionization curve. This change in sign explains the
overshooting noticed in the radial distribution at
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" (6=45°). Behind the sphere (downstream), the two
~effects act concurrently leading to the spread of

contours and increasing the degree of ionization
continuously with the radial distance. This can be
remarked from the radial distribution at (§=135°).

Figure (9) shows heat flux distributions- by
individual species in addition to the total heat flux
distribution. As expected, recombination is the
dominant heat transfer mechanism. Also,the figure
shows the heat flux distribution calculated by
Chen-Pfender in reference (1), where conventional
heat conduction by temperature gradient was
adopted. The difference between the results of this
study and Chen-Pfender’s work agrees well with our
expectancy that small particle diameters,
non-equilibrium nature of the boundary layer and
surface charging will have strong effects on the heat
transfer mechanisms.
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Fig.(9) Heat fluxes distribution at the sphere surface
by individual species (1bar,Re=1,T,/Tw,~1/13)

Figure (10) shows the total and the individual
species contribution to the heat flow into the sphere
at different pressures. When pressure is decreased,
both the number density of heavy particles and the
number density of electrons are decreased with the
result that each contribution is decreased too.
However, it may be noticed that recombination heat
flow 1s dominant and considerably greater than that
of heavy particles or electrons. It is obvious from the
figure that the relative importance of electron heat
flow 1s increased because of the increase of the
degree of ionization.
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Figure (11) shows the vanation of friction, pressure
and the total drag coefficients with the Reynolds
number. The qualitative trend is similar to that
calculated by Sayegh and Gauvin{!? where the drag
coefficients decrease with increasing the flow
velocity.
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Fig(11)Variation of friction , pressure
and total drag coefficients with Re

Figure (12) shows the variation of friction, pressure,
and total drag coefficients with pressure at Re = 1.
As the pressure decreases, the density of the bulk of
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the gas (p,,) decreases, then, for the same Re, the
velocity of the flow shows higher values. The same
effect of decreasing drag coefficients with increasing
the flow velocity that appears in figure (11) is
repeated here where decreasing pressure s
equivalent to increasing velocity which leads to
decreasing the drag coefficients.
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Figures (13) and (14) show the surface pressure
distribution and the variation of the stagnation
pressure with the Reynolds number respectively.
They are found to agree qualitatively with those in
the work of Sayegh and Gauvin{!9.

Figure (15) shows the surface slip velocity
distribution. It shows the same behavior of the work
done by Chen and Pfender(1?.
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CONCLUSIONS

From the previous discussion, it can be concluded
that the effect of departure of plasma from
thermodynamic equilibrium nearby the sphere
surface has a recognized effect on the resultant heat
fluxes.

Considering the fact that recombination heat flow
is the dominant mode of heat flow near the sphere
surface, the boundary layer non-equilibrium
charactenistics should be taken into account.

The one-fluid, one-temperature model
underestimates the calculated heat flows from the
plasma to the sphere surface. This is due to the fact
that one-fluid, one-temperature model overlooks the
contribution of both electrons and recombination
energy.

The difference in estimated heat flux using this
model and the one fluid one temperature model is
about 20% .
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