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ABSTRACT

- .

An exact formulation for the problem of discrete displacement and velocity feedback for structural
control of an elastically supported vibrating beam carrying concentrated masses and subjected to axial
force is given. Using Laplace transform method (on the spatial variable), a closed form expression
for the solution of the boundary value problem is obtained. The analysis is completed by deriving
the orthogonality condition for the eigenforms. The formulation allows for studying the effect of
changing actuators’ positions and/or gains on the response of the system.
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NOMENCLATURE
. stiffness of torsional spring i (i=0 for left end, P axial force, positive when compressive
i=1 for right end) q(r)  dimensionless time function
¢, ¢L/EI t time
E m(_)duh}s .of elasticity of bearfx material T JRLYEI
g; gain of displacement-proportional control force x ™ x-position of k-th mass
B £ L*/El x?c) x-position of i-th actuator
h; gain of velocity-proportional control force u(x-a) unit step function at x = a
r w(x,t) beam deflection
.hi hlLNﬁ‘I X, Y, z right-handed coordinate system
1 ‘/'IT
vAl2
I' * 2nd moment of area of beam cross-section about g PLélEI
k y-axis . Xi xi(c) /L
Jk Ji IuL 6(x-a) Dirac delta function at x = a
_Jx mass moment of inertia of k-th mass about y- 5 (x-a) Ld(x-a), dimensionless Dirac delta function
axis atx =a '
; stiffnf:ss of tfans]ational spring 1 (i=0 for left €(§)  see appendix I
b end, i=1 for right end) I'Ty; overall system matrix and its submatrices,
Bk kiL3/EI see eq. (16)
- K total number of concentrated masses Yij elements of submatrices T';; (see eq. (16) and
- L' beam length appendix II)
M total number of actuators L see egs. (8,9) ,
“Mk' k-th concentrated mass ¢(¢) separated spatial dimensionless deflection
m, M, /ul function
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arameter systems, two types of control are possible:
discrete or continuous control. In discrete control the
control forces are applied at specific finite number of
points on the structure, whereas in the continuous
type they are distributed all over the structure. It is
obvious that the use of discrete control is much
easier to achieve than continuous control, which
‘needs special matenals (e.g., viscoelastic polymers
[89]) and is more difficult to design and
- manufacture for full-scale, even only moderately-
sized structures.
For the mathematical treatment of discrete control
- of distributed-parameter systems it is customary to
employ some sort of eigenfunction expansion,
“normally with a small number of eigenfunctions
- participating in the calculated overall response of the
- structure. In such so-called projection methods,
~ where the infinite-dimensioned original problem is
“projected" on a finite-dimensioned space, truncation
 error is inherently present. Moreover, in the special
! case of structural control, the phenomenon of spill-
¢ over [3] may occur, whereby the uncontrolled modes
might be adversely affected by the control of other
modes. Hence, it would be advantageous to be able
to treat discretely controlled distributed-parameter
systems without reverting to the truncated
eigenfunction expansion approach. It is the aim of
this paper to introduce such an exact formulation of
this problem.

Vibration of distributed-parameter (often, though
less appropriately, also called continuous) systems,
taking concentrated effects due to a variety of origins
into account (sometimes referred to as "combined"
systems [4]), has been a subject of research for a
very long time. More than 60 years ago Gassmann
[19] has studied the problem of a beam carrying a
concentrated mass. Earlier work has however been
hampered by the limitation on possible calculation
complexity required to solve these problems.
Different techniques has since been employed to
solve the problem, eigenfunction expansion being
used in the majority of cases. So did, for example,
Buttler [20], in 1967, who treated the problem of a
beam carrying a spring-mass-damper system using
eigenfunction expansion. Akin and Mofid [21], in
1989, applied the same method while considering
the problem of a beam with a moving mass. (They
refer in their paper to several earlier treatments of
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this problem, some dating back as early as 1929).
The other approach which proved very efficient is
the energy approach (which is also in essence a
projection method). Warburton, who has for long
time studied extensively the application and
optimization of vibration absorbers for lumped-
parameter systems, has, together with Ayorinde,
employed the energy method to treat the problem of
reducing the vibration of distributed-parameter
systems using a spring-mass-damper system [22,23].
The discrete vibration absorber used, being a passive
one, was tuned only to the fundamental vibration
mode of the considered distributed-parameter
structures, namely plates and shells. Laura et al. [24]
has extensively studied the vibration of beams
carrying concentrated masses also using the energy
approach. In recent papers, Low et al. [25] and Boay
[26] studied the vibrations of plates carrying
concentrated masses using energy method.
Meanwhile, Leckie and Lindberg [27] used the
finite difference method to study the effect of
lumping beam parameters on its frequencies.
Transfer matrix methods has also been extensively
developed, e.g., in the classical work of Pestel and
Leckie [28]. Plunkett [29] wused influence
coefficients to calculate optimum concentrated
damping for distributed-parameter systems. Still
other solution approaches exist for combined
systems, e. g. [30,31], where another exact method,
the transfer function synthesis, is introduced. This
method is suitable for complex, multi-connected,
multi-branched combined systems. A short survey of
other methods is also given in [30].

Contrary to the field of classical control, using
Laplace transform to solve vibration roblems has not
been very widely adopted; it was mostly reserved for
special problems. Yen [32] treated the problem of a
vibrating beam with tme-dependent boundary
conditions, while Florence [33] treated the problem
of a traveling force on a Timoshenko beam, both
using Laplace transform on the time vanable.
However, it is usually more productive to transform
the spatial variable because the time dependence is
often a simple initial value problem [4]. Pan [34]
considered the problem of a beam carrying
concentrated masses and used the Laplace transform
on the spatial variable. Grant [35] used the same
approach to solve the problem of vibration of a
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Timoshenko beam carrying a single mass in the
middle. Chonan [36] treated the problem of a
moving harmonic load using Fourier transform on
the spatial variable. The use of transform methods
has the advantage of easily dealing with
discontinuities in the system. Also, the exponential
form of the ume and spatal functions lends itself
readily to Laplace and Fourier types of transforms.
Moreover, transform methods can yield exact closed
form solutions, though at the cost of moderately
increased amount of analytical and numerical
burden. Hence, we adopt this approach here.

The configuration of the problem considered here
1s aimed at representing as near as possible actual
unidimensional structures. The choice of elastic
restraint at beam ends as the support condition is
motivated by the fact that it represents a realistic
simulation of actual supports, since structural
members are usually supported by other members
that always show some degree of flexibility. On the
other hand, concentrated masses resemble real
structures, where equipment and other types of
concentrated loads are present.

PROBLEM DEFINITION

Consider a uniform slender beam restrained at each
end by one translational and one rotational spring,

Figure (1).
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Fig. (1)

The beam carries a number of arbitrarily-located
concentrated masses M, with their centers of gravity
laying on the beam longitudinal axis. Each mass has
a rotary mass moment of inertia J, about the beam
y-axis. An axial force P, considered positive when
compressive, acts on the beam. This axial force
should be less than the buckling load of the beam
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for the given boundary conditions. Further, sensors
are used to measure the displacement and velocity
of the beam at a finite number of arbitrarily-located
points. Based on these measurements, control forces
are generated, with the proportionality constants g
and h; as the control law, and applied at the
respective measuring points through actuators. This
type of control is calied direct output feedback
control and is considered particularly useful for
distributed-parameter systems. [3,37-40] Physical
external or internal damping is not considered.
However, its addition to the problem poses no
difficulty. It would simply add to the corresponding
term resulting from the velocity-proportional control
force.

The differential equation of motion governing the
transverse vibration of the beam is [34,35,41,42]:

EIw "(x,£) +Pw "(x,t) + p W(x,t) +
K
+Y (M (x™ )8 (x-x{™) } -
k=1

= /7, (@) (m), ,/ (1)
=Y 0% V)8 (x-x, )} +
k=1

M
Y {lgwx 0 +hw(x 2,016 (x-x)} =0

i=1

The concentrated effects are taken into account by
making use of the Dirac delta function, which allows
expressing concentrated effects as distributed
functions, thus - formally - removing the
discontinuities and hence allowing integration. It
should be noted that the dimensions of Dirac delta
function here is (1/length). The inclusion of a
velocity-proportional control force leads to the
appearance of a "damping" term, although no
physical damping devices are present. The
displacement-proportional term contributes towards
changing the original stiffness term. The boundary
conditions for the elastically restrained ends are [43]:

atx = (:
EIw(0,t) + k, w(0,t) =0 (2a)
EIw”(0,t) - ¢, w' (0,t) = 0 (2b)

and at x = L :

EIw ”(L,t) - k;w(L,t) =0 (3a)
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EIw"(L,t)+c;w’ (L,t) =0 (3b)

These boundary conditions can be specialized to

present any type of boundary conditions, especially

e three "standard" boundary conditions: free,
simply supported and built-in end, by assigning
proper limiting values (0 or o) to respective spring
stiffnesses.
- Before solving eq. (1) it will be convenient to cast
it in a dimensionless form by changing to the
dimensionless spatial and time vanables:

£ = x/L

t=tT

and the dimensionless deflection

®(E,1) = w(E,T)L

The resulting equation for $(Z,t) can be solved
using separation of variables by assuming a solution
in the form:

O(E,T)=0(E).q(r)=d(E) . e** ,

where \ is a dimensionless parameter. The separated
equation for the dimensionless spatial function ¢(§)
is then: '

¢””(£)+D’¢”(E)+l’¢(5)+
+)-22 {mk¢(\’k)g(5 —Vk)}— ‘

k=1
| 2 sad 1y |
-A%Y G (v B (E -V + “
k=1
M _— —-—
YA DM E -x)d(x)}=0
i=1 :
with the boundary conditions:
at (= 0:
$"(0)+k,$(0) =0 (5a)
$(0)-<,9'(0)=0 (5b)
at £=1:
o"(1)-k,$(1)=0 (62)
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o"(1)+¢,¢'(1)=0 (6b)
SOLUTION

The solution of eq. (4) will be found using Laplace
transform with respect to the spatial variable £ .
Straight forward application of Laplace transform and
its inverse [44] leads to the solution:

. preosnt cosce}d,«,)+

¢(E)=[ “TIZCOSTI § +C2COSCE

&) *-n?)
+[ -nsinn g +¢sin{€ | 52 {sinn§-nsin¢g ®(0)+
*-nd n¢(*-n?)
4 COS"]E‘COSCE}Q//(O) +[csmﬂ5‘ﬂs.mcak/ﬂ(o)_
¢*-n? n&(%-n?
K {sinn(§-vy)-nsin{(§-v,)
A2 "m . > }o(v Ju(€-v,)+
b2 ‘[ 2 ¢(@2-n?) e

ZK: k[cosﬂ(& V) —cos{(&- Vk)]¢/(v Ya(€ -v,)-
& @ et

M {sinn (€ -x,) -nsin{ (§ x,}o
xJu€-x)
Zl: [ n2(%-n?) Y

where 7 and { are given by:

4
case a: for % > A2, nand{ are both real:

n=2/(B%72)-/(BY4)-12 6a)
C=2/(B7) /(BT -1 (8b)

< A%, n and{ are both complex:

n=2/(2)-i (A*-(B74) (%)
C=+{ (BY2) /(A2 -(B7/4) (9)

The solution for the special case where no axial
force is applied to the beam ends will also be given
here:
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d({)=[cosatcosha]d(0)+

+[(sinaEcosha £ +cose Esinha E)/2a]¢/(0) +
+[(sinaEsinha £)/2a%]$"(0) +

[(sina EcoshaE ~cosa £sinha £)/4a>1¢"/(0)-

-(—-)ka[sma(e ~vy)cosha(E-v,)-

A=t
—cosa(E -vsinha (g -v)lb(vIu(-v )+

+(———)EJk[Slna(E vsinhe (€ -vId (v Jug -v)-

a k-l

—(——)E (@ +hA)[sine (€ ~x,)cosha (& -x) -

all

~cosa (& -xsinha (€ -x)1d(x)u(E -x,),
witha =/A/2

However, the analysis will be further developed
below for the more general case including the axial
force. The special case (with P = 0) can be treated
following completely analogous path.

Using the abbreviations given in appendix I, the
deflection ¢ () and the boundary conditions can be
expressed in a more concise form, namely

d(E)=€,(D)P(0)+€,(8)d'(0) +
&,(8)d”(0) +e,(8)¢”(0)-

K
-lzkz; {Inke;;(e 'Vk)d)(\’k)}U(e —Vk) *

K (10)
+}'ZE {jkez(E _Vk)¢l(vk)}u(£ —Vk)-
k=1
M e
=A%) {8, +hyA)e,(E -x)d(xh(E-x)
i=1
with boundary conditions:
at £=0:
"(0)+k $(0)=0 (11a)
$"(0)-<,4'(0)=0 (11b)
and at {= 1:
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[F4(D) -k,5,(DIOO)+[F,(1) -k,€,(DI0)+
+[ll!2(1) ~k,&,(D19"(0) +[¥;(1) -k, e,(D1S"(0) +

+122 tm, [y,(1-v) -k &5 (1-vul-vld(v)-
A (12a)

-12}: G,[0,(1-v) ke, (1-v (1 -v)lp/(v) +
k=1

M R —
+Y 4@ b M, (1-x) -k e,(1-x)Tu(1 - X} (x) =0
i=1

[k (1) +C,8,(1)d(0) +[k, (1) +C,8,(1)1¢/(0) +
+[k,(1)+€,8,(1)1¢"(0) +[k, (1) +¢,0,(1)]$"(0) +

K
+A2Y" fm, [ky(1-v,) +€,0,(1-vPJu(1-vlb(v)) -
k=1 (12b)

K
-22% £, [, (1-v,) +,8,(1 -v ) Tu(1 -v )l (v ) +
k=1
M v
+3 1@ +h Mk (1-x) +¢,0,(1 ~x a1 -x)lb(x;) =0
i=1

The four above boundary conditions produce four
equations for the first $(0),

¢/(0),9”(0), $A0). The rest of the equations for the
rest of the unknowns is obtained through
constructing the so-called consistency equations [34],
found by consecutively substituting {= v,-a in eq.
(10) then in its first derivative (with k = 1,2,....K),
and again in eq. (10) (with i = 1,2,...,.M), where 2’
is a small quantity, and in each case letting a—0.
[34,35] This is, in effect, equivalent to successively
solving for the rest of the unknowns, namely the K

deflections and K slopes at v, and the M deflections

four unknowns:

at x,. The consistency equations thus obtained are:
€,(v)9(0) +€,(v)$(0)+
+&,(v)$"(0) +e5(v )b (0) +
-1
+3\.22 {mye,(v,-vu(v, -v (v -
k=1
-1 (13)
—Azz fie,(v,~vuv,~v Ol (v ) +
k=1
M —
+3 1@ B ey (v, xu(v, - x)b(x) -
i=1
-0(v)=0,  1=1,..K
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(4)0(0)+6,(v )$/(0) +
(v)9"(0)+8,(v )$"(0) +

] -1

A%y (m,8,(v,~vu(v,-v lp(v,) -

k=1
-1 (14)

=AY 5,0,(v,~v Ju(v,-v I (v ) +

k=1
M —
4+ @b A8, (v, ~x)u(v, - x )M () -

i=1
“¢'(v)=0, r=1,.K

€,(1)$(0) +€,(x )9’ (0)+
+€,(1,)9"(0) +€,(x )" (0) +

K
+A'2k2 {mk€3(xq—vk)u(xq—vk)}¢(v k) w
1 =]

A (15)

-A kz: {Jkez(xq‘\'k)u(xq'Vk)}¢/(vk)+

=1
-1 i3
+21: 1@ bV es g xdulx~x)d(x) -
~$(xy) =0, q=1,..M

Equations (11-15) form a homogeneous system of
equations for the (4+2K+M) unknowns:

$(0),4(0),4"(0),6"(0), ¢ (v), &’ (v, and $(x;). This

can be put in the matrix form:

I®=0,
or

(16a)

o

="

1 r12rl3 Fl4

L
=l
)

n Tl Ty
3 Tl Ty
s Tl F«_

~0- (16b)

=
wel

]

=Y

where

®,=[6(0) ¢/©0) $"(0) $"(OT
D,=[d(v) &(v,) ST
O,=[¢'(v) P(v,) (v It
O,=[d(x) d(xp) Y]

17)
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The elements of the submatrices T'y; are given ]
Appendix II. The overall matrix T' is general i
nature since elastic end restraints were considere
Should any of the actual boundary conditions at th
left beam end in a considered structure be pur
geometric, i.e. calling for a vanishing deflection «
slope, the corresponding row and column in T" shoul
be deleted.

It is to be noted here that the square matnx T’
not a stiffness matrix, but rather a form of an overa
transfer matrix. It is neither symmetric nor has an
special structural characteristics. Its elements ai
transcendental functions of the eigenvalue A
Equating the determinant of the overall matrix T'
zero, for a nontrivial solution, yields the frequenc
equation, which will have, in general, complex root
A, It is then possible to solve for the correspondin
eigenforms ®_, within one degree of indeterminac
The imaginary part of any root gives the (dampec
frequency, while the real part gives the decay rat
The roots can be found using any of the existin
efficient numerical libraries (e.g., NAG, IMSI
EISPACK, etc. [45]). The system matrix wi
normally be of relatively low order since the numbx
of masses and actuators in practical cases will b
small. In the case of a low order matrix it woul
even be possible to use a symbolic mathematic:
software package to obtain a closed form expressio
for the characteristic equation of the system.

The steady state general solution for th
dimensionless deflection of the beam can finally b
expressed as the infinite sum:

$ED) = Y 6,(5)q,() (18

n=1

where the shape of the time function q,(7) woul
depend on the nature of the eigenvalues and th
initial conditions.

ORTHOGONALITY CONDITION

Having obtained the eigenforms, it i1s essential t
establish the corresponding orthogonality conditions
in order to complete the analysis of the problen
since this would be needed for solving th
corresponding forced vibration problem, wher
eigenfunction expansion 1s used for arbitrar
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(continuously differentiable) forcing functions in the
closed -interval [0,1]. This is done by multplying
eq. (10), written for the n-th eigenform by the m-th
eigenform ¢, and integrating over the domain from

(=0 to { =1, as follows

1 1 1

[ 0ub2"de+B[¢, 0 dE +27 [0, 0,dE+

[ 0 0

‘ K . -

+ A0 my [0 ()8 -v )b (v dE -
k=1 9 (19)

Kk 1 _
Y i [0 (EIBE -v b (v IVAE +
k=1
T
+30 @ thA,) [0,(E)3(E-x),(x)E =0
i=1 ‘ 0

It should be noted here that the differential operatord*/3¢*
1s self-adjoint with respect to the "standard"
boundary conditions mentioned above, and that the
differential operator °/3¢% is self-adjoint with
respect to the built-in and simply supported
boundary conditions.[4,46] Hence, for the two latter
boundary conditions, the first and second
integrations in eq. (19) vanish, and the orthogonality
condition can be given by:

1 K
[0,6,98+Y" mb,, (v, )0, (v +
0 k=1

K
Y PV Uv) + (20)
k=1

5 L
+% zl: @i *hil,.)¢m(xi)¢,,(xi) =0, m#n

where the following properties of Dirac delta
function were utilized [34]:

[ #(®8¢-2)dE=¢(a), and

(608 -a)dE=-/@)
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For other boundary conditions the full form of
orthogonality relationship, eq.(19), should
retained. For the special case of an uncontrolled
beam, with simply supported or built-in ends
carrying a single mass m, (ignoring its rotary inertia)
eq. (20) reduces to the known form [34]:

1
[0, +m,6,(v )0, (v)=0,  mn.
0

It is seen from eq. (20) that the presence of the
concentrated masses and control forces, complicate:
the orthogonality relationship. For the case where n
concentrated masses are present, Weaver an(
Silverberg [41] observed that locating the actuator
at specific points on the beam restores the
orthogonality of the eigenforms under certan
conditions. Their solution was based o
eigenfunction expansion with a small number o
eigenforms participating in the overall response.

CONCLUSION

An exact formulation for the problem of discre
displacement and velocity feedback control for ai
elastically supported vibrating beam carrying
concentrated masses and subjected to axial force i
given. The positions of the masses as well as the
control forces are arbitrary. The solution is based o
the use of Laplace transform with respect to the
spatial variable and arriving at an exact form of the
eigenvalue problem of a general matrix througt
satisfying boundary and intermediate condition:
regarding the deflections and slopes at the positions
of the concentrated masses and actuators. The
eigenforms are given in terms of the boundary anc
intermediate conditions. The resulting matrix ha:
complex roots due to the presence of terms arising
from the velocity feedback which are
mathematically - equivalent to damping terms. The
complex roots govern the frequency and the decay
rate of vibration. The given exact formulation allows
for studying the effect of changing the number and
positions of the actuators as well as the gains of the
feedback loops for displacement and velocity on the
frequency and decay rate. Optimum placement of
actuators satisfying certain criterion such an
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“minimum control energy might be sought for. The

exact formulation does not suffer from the

shortcomings of series solutions where spill-over and

- truncation errors are bound to occur. Other problems

[' _can be treated using the same approach, such as

. tubes conveying fluids, as in the case of marine
nsers, where the mathematical formulation is
completely analogous to the effect of the axial force
considered here.
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- Appendix I Appendix II
The elements of the submatrices I“IJ in eq. (16)
B ) - —"120(()2721’3 +C22)COSC§ ;re %2164[1) by:
: —1/. 11 (4x4):
_ —msinng +GsinCE Y= ke Y12=Y13=0, Y14 =1
B s A i
¢ -n") Y215 Y22 = ~Co, Y23 = 4 Y24
g,(E) = cosng — cosC Ya = Wo(D-k,&(1)
R . (O -n) v, =, (1)-KE (1)
0,(®) = "s‘ﬁ‘fg Yo = wa (D -Kies (1)
nd! o Yas =¥, (D-Kie, (1)
P o= TomE oG ind Yo =%o()+58, (1)
| (€ -n) Yo =% (1)+58,(1)

E )= *cosng - C cosCE

s =K, (D) +7¢,0,(1)

€’ -n?) -
S 540 'Y44=K3(1)+0193(1)
b v~ —0 i=1,2; =1,
g (&) =g4(8) + B? (&) =A2m, [\v3(1 v) K &(1-w) =1L K
8, (6)=#,(8) + P2 &5(6) y4j—x m[1<3(1-v )+C,6,(1-vlL =1, .. K
Iz (4xK):

Although the rest of the abbreviations, given
below, can be completely expressed in terms of the
g(€) and its derivatives, it is much more
convenient to give them different symbols to ease

=0, =12;j=1,.. K
V=M lun(1-v)-K e (1wl =1, . K
743“—'}\' JJ[Kz(l'V e, e2(1 V)] FL.. K

~ the construction of the equations (11-15). 'y (4XM):
8,(8) =e, (&) +B%,(8) ¥=0, 1,2, 5=1, ... .M
3} () =%, (&) Y3~ (gJ +h, }‘)[\1’3(1'7(]) k 1&3(1 X,)] =100M
elz(i):Sj(&) v4=(g; + 0, M);(1-%)+C,8;(1-x)], =1, ... . M
0,(8)=¢2,(8) ‘ T,, (Kx4): '
%o(6) =8, ()P e (8) Y:l= g, (v), i=1, .. K
K, (£)=0,(8) v, = & (v), =1, ... K
KZ(&) = 8()(&) ‘ Yi3 = 82(Vi)’ i=]v + 8 :K
K3(8) =&,(8) Yo = £5(v), i=1, ... K
Vo (8) =€4(8) +B%,(8) iz_ﬁ:): s
W, (&)=x,(&) 'Yzi+1=,0, iz,l, ’ (K-1)
V. (8)=2,(5) v=Ame;(viv)), =2, .. K =1 ,(-1)
V;(€)=¢,(8) , I,; (KxK):

1,;~0, i=1, .. K;j=i, ... K
Yi=-AgEa(vi-vy, i72, . K =1, G- 1)

Alexandria Engineering Journal, Vol. 34, No. 2, April 1995 A 183



EL IRAKI: Exact Formulation for Discrete Feedback Control...

[,y (KxM):
V= l(&; + A )e;(vi-xp) u(vi-x),
=1, ... K;=1,.. .M '

5, (Kx4):

¥a=6,(v), =1, ... K
v, = 0,(v), =1, ... K
Yis = ez(vi), =1, ... K
Y =0,(v), =1, ... K

I;, (KxK):

¥%=0, =1, ... K=, ... ,K

Y =AmO5(vi-v), i=2, ... K =1, ... ,(i-1)
I';; (KxM):

v:=1, =1, ... K

V=0, =1, ... (K-1)

yij:')"zjjez(vi'vj)) =2, ... . K; =1, ... ,(-1)
I-'34 (KXM)_ '
V=(&; + h;A)05(vi-xy)Tu(vi-yy),

=1, .. K;j=1,.. M

Iy (Mx4).

Ya = &o(Xp), =1, ... .M

Yo =&, (), =1, .. .M

Yis = €,(%), =1, ... M’

M

Tie = &5(X), =1, ..,
I',, (MxK):

Y= A2 migs (x-vi) Ju(xi-v)),
=1, ... M1, .. K

Iy5 (MxK):

Yi=-MOg (- vplu-vy, =1, .. M; j=1, ... K
I'y, MxM):

yii:']-a i:l, ,M

lYi,H‘l:O’ 1:_:.1, ,(M"l)
Yij:(gj +h j)\')83(Xi'Xj)a
=1, .. M:j=1, ... (i-1)
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