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ABSTRACT

The elastic lateral buckling moment capacity of simple beams, having copes at both ends and loaded
at various positions on the same cross section, is studied. The critical case of a single concentrated
load acting at mid-span of the simply supported beam is considered. The results show great influence
of loading at top flange for the coped beams specially for short spans where the plastic moment
capacity is critically affected. The general equation for coped beams with a load acting at top flange
is presented and many solved examples are used to introduce the curves showing the behavior for

different cross sections and spans.
Keywords: Lateral buc

INTRODUCTION

Connections between steel elements are of crucial
importance to the structural behavior of the whole
system. This fact is due to the fancy and accurate
methods used in both designing and constructing
steel structures. While two elements are meeting at
a point, the method used to connect them may lead
to a roller, a hinged, or a fixed end for one of them
‘relativé to the other. 1.1
In some situations - modifications have to be
performed in order to construct the structure, one of
these cases is cutting a part of the flange to allow
connecting a beam with a larger, or same size, girder.
This cutout which is widely used in simple
connections is called a cope as shown in Figure (1).
This cope is an important factor which controls the
lateral-torsional buckling behavior of pin-pin simple
beams and’changes ‘the problem from the case
considered by Timoshenko (1) where the differential
lequation of a beam with two rotation prevented ends
was: investigated- 'to - that studied by du Plessis (2)
where the effect of end-notches on the lateral-
torsional buckling of beams had been examined.

In the case of uncoped beams the, most important,
compression flange is assumed restrained against
lateral movement at both ends, while for the case of
coped ones this significant factor is not satisfied and
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the two ends are relatively free to move depending
on the lateral torsional stiffness of the Tee section
remaining beneath the cope. The reduction in beam
elastic torsional buckling moment capacity may
easily shrink and lose more than 90% in some cases
specially for short beams with large cope length and
width. This effect was studied by Gupta (3) and
Cheng (4,5).

(b) Coped beam with
clip angle

a) Coped beam with
end plate

Figure 1. Examples for coped beam connections.

On the other hand, the problem of elastic lateral
buckling of beams and the effect of the load position
application was studied by other researchers as
Nethercot (6). It was found that there is a
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considerable effect of the application pomt of the
load on the overall lateral buckling of the beam.
Figure (2) represents an easy to follow example for
the reason of this phenomenon and how the load
position is decreasing, or increasing, the stabilizing
influence of an additional torque. This indirect
torque leads to a substantial decrease, or increase, in
the lateral torsional buckling capacity of beams,
which may result in a more critical case than that of
a constant moment acting along the entire span.

Top FL
Loading

Center
loading

Eottom FL
Inading

Figure 2. Effect of load position on the lateral
stability of I-sections.

In the presented work, the combination of these
two factors is introduced and many examples are
solved to show the behavior of the beam under
different load positions and end conditions. The
reason of this study is to drag the attention of the
designers to the importance of detailing their designs
and how many factors ma~ reduce , dramatically, the
performance of their ¢ .gns and shift them to real
far away regions of the ..ctor of safety they have in
mind.

Lateral Buckling of Simply Supported I- Beams

The general lateral buckling problem of a doubly
symmetrical I-beam under a constant moment may
be illustrated by Figure (3).

The differential equations for this case will be:

EI —=M
Y dz?

(1-a)

3
G1%® _gc 4o _du (1-b)
dz

Y dz? dz
Where E is the modulus of elasticity of the beam
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material, I, is the moment of inertia of the bea
section about its Y axis, x, y, and z are th
considered coordinate axes shown in figure 3, ui
the lateral deformation of the shear center, ¢ is
angle of twist, G is the shear modulus of elasticity
J is the torsion section constant, and C, is tl
warping section modulus.

Considering the I-section shown in figure 3, th
following approximate expressions for Iy, J, and C
may be used:

¥ ines (24

! 2bt3+(d-1)t,}
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I(d-t)?
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w 4 !
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Figure 3. A simple span beam subjected to
constant moment. '
Allowing the two ends of the beam to warp whil
preventing them from rotation, which is the case
two braced beam ends, and considering the tw
beam ends to be simply supported, the followin,
boundary conditions are stated:

Uy = Up = P = P =0 (3

2 2
i G S e
dz? o dz? 4 di? .dz o

Using the boundary conditions of equation 3 wi
the differential equation 1, leads to the followin,
expression for the moment required to cause elasti
lateral buckling (M 1p):

252
B n°E°LC,
ML]B = —L- \JElyG.’ + —-—Z-z———- (4



For the case of non constant moment, this equation
of My 1 is modified to:

w2E*L C,

- §)

M, =C, % JEI),GJ *

Where:
C, is the equivalent uniform moment factor which
accounts for any case of acting moment. Values for
this factor may be found for all cases of loading in
texts and codes dealing with designing steel
structures.

The transverse loads are generally considered
- acting at the level of beam centroid, regardless the
 load is free to move with the beam section while it
is deforming, or not. If the load does not move with
the beam as it buckles there will be no effect for the
position of load application. On the other hand, if
the load 1s moving with the beam section, there will
be a great effect on the - ability of the section as
shown before in Figure ). The equivalent uniform
moment factor is modiucd by Nethercot (6) to be
Gy« which may be represented as follows:

Cy+ = C, / n for the case of load at top flange and
Gy« = C, * n for the case of load at bottom flange.

* Where:

nis a factor depending on the type of loading. For
‘the most critical case of a mid-span loaded simple
“beam, 7 is considered as follows:

n = 1.000 - 0.180K? + 0.649K (6)

=2 EC,
K= | —= 7
L*GJ

To illustrate the effect of load position on the
torsional buckling moment capacity, two I-beams are
analyzed for the three load pesitions shown in Figure
(3) and the results are shown in Figure (4). These
two examples show how important the level of load
application is, and how it may reduce the lateral

buckling moment of beams.

where
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—0—Load at top
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Figure 4. Effect of load position on the lateral

buckling moment of a centrally loaded simple span.

Lateral Buckling of Simply Supported Coped Beams

For the coped beam shown in Figure (5), some
practical limitations are considered. The cope depth,
dc, 1s not exceeding 0.2 d and the cope length, ¢, is
not exceeding 0.5 d where d i1s the beam:depth.
Cheng and Yura (4,5) proposed a method: to -deal .
with the coped beams, loaded at shear center, based
on equating the lateral buckling moment (M; ;) of
the uncoped' segment with that of the coped 'T-:
section region (Mr,,). ]

4 Cy +C,
T 1 fde
t 3 1

Figure 5. A typical coped beam at both ends.

The condition of getting the critical moment (M)
controlling the lateral buckling moment of the coped
beam is:

1,1 _ 1 ®
MLZB L MTee Mcr
c

where the lateral buckling moment of the Tee
coped section, My, , is represented as: '
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n Y TYp
My, == (ELGIL| 1+(—™) +—71 O=)

where

_ B | E] :
Y=~ 2N GJ G
t
p,=-[11[f[<h,,-y')‘
x 9-)

YL . 4___t_ 23_‘+ t_iz * _
o -9"1-0¢ 2)[12 bt(y 2)]]+2)’ t]

where:

y* is the distance between the neutral axis and the
extreme fiber of the Tee section flange. Figure (6)
shows the effect of the cope length and width on
the lateral buckling of I-beam. The reduction of
moment capacity of coped beams is clear specially
for short beams, where the coped T section is
controlling the lateral buckling moment. While for
long spans where the capacity of the uncoped region
is controlling the behavior, there is a much less
difference between the two moments.

—a—c=d/4 & de=d/10

—+— Uncoped Beam
—x—c=d/2 & dc=d/5

S000
IPE # 400
4000

3000 \

Moment { t.cm)
3
3

g

S e
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Span (ms)
Figure 6. Effect of coping on the lateral torsional
buckling moment of a centrally loaded simple span.

<

Effect of Load Level on Coped Beams

The combination between the coping and top
flange loading is considered due to the fact that this
is the most critical case affecting the behavior of the
simple beam as shown in Figures (4) and (6). These
two factors, load position and flange coping, are
expected to change the behavior of any loaded
beam. The most important points to be investigated
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are how far is the modified lateral buckling moment
of the top flange loaded coped beam from that of
the shear center loaded uncoped one and the factol
of safety used in the design. For a simply supported
beam, mid-span loaded, and coped at depth of 0.2¢
and length of 0.5 d. Equation 8 is modified to be:

M l‘:TB LM Tee Mcr
C

where
* * TU anzlwa 11
C C
C, = =2 = b (12
n 1.0 - 0.18K? + 0.649K

and K is calculated using equation 7.

Numerous beams are investigated specially 1Pl

sections, where web depth to thickness ratio i
relatively high. For each beam the modified and th
original lateral buckling moments (M} g« and M, p;
are calculated for different values of span, L. Th
variation between the two values is of great interes
because the beam, which is assumed to be stabl
and capable of carrying loads till the plastic momer
is achieved, practices a case of elastic lateral bucklin
at an earlier stage of loading as shown in Figure (7
The beam which is thought to sustain plasti
moment for a specific span till the behavior |
controlled by elastic lateral buckling is changing i
behavior at an earlier stage reducing that dependabl
length significantly. In other wards, designing
beam based on its plastic moment capacity may b
questionable specially for short beams with copes
their ends and loaded at their top flanges.
The following example shows how important |
considering the two factors. Two I beams a
considered, an IPE section and a BFIB section |
represent the cases of different high and low we
height to thickness ratios.
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moment capacity.

Example:

A BFIB 300 and an ™, 400 are considered as
~simple beams loaded mid-span with a single
- concentrated load as shown in figure 8.

B o 2N
4

2l — |
\ L/2 ) L/2 3

Figure 8. A simple span beam loaded at its mid-
length.

The plastic moment is calculated for each case with
the section moment capacity based on considering
copes at ends, top flange loading, and the
combination of the two cases. The results are given
in tables 1 and 2. All calculations are based on the
factors used in equation 2 to get the required section
properties. The copes are assumed to be of 0.2 d in
- height and 0.5 d in length. Table 1 gives the plastic
moment for each profile and the controlling span at
which the ordinary equation of lateral buckling
moment (equation 5) is used to get the moment
capacity of the section. The elastic buckling moment
capacity is calculated based on considering end
copes, top flange loading, and the combination of
. these two modes for each of the sections at these
- controlling spans.
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Figure 7. Effect of top flange loading and beam coping on the

Table 1. Plastic Moments and Maximum
Controlling Spans.

Section | Plastic moment Mp |Length to sustain Mp
(t.cm) (cm)
BFIB # 300 4519 1613
IPE # 400 2972 582

Table 2. Effect of Coping, Top Loading, and
Their Combination.

Section Coped beam Top loading |Copes & top
moment (t.cm) |{moment (t.cm) |load (t.cm)
BFIB 300 4452 3810 3762
IPE 400 2308 2028 1691

Table 2 indicates that while the two profiles are
thought to fail by plastic moment at specific spans,
the real capacity of the section at these spans are
controlled by elastic lateral buckling behavior at
lower moment values. IPE 400 which is thought to
reach the plastic moment of 2972 t.cm at a span of
582 cm 1s failing by an elastic moment of 1691 t.cm
at this span. The reduction, in this case of IPE, is
about 75% which may not be ignored. However, the
difference for the BFIB is only about 20% which is,
also, a high value. The above example gives an
indication that top flange loading combined with
coping the beam at its ends is, seriously, reducing

C 165



SOR(SUR: Effect of Load Position on the Elastic Lateral Buckling Moment on Steel Coped Beams

the I section moment capacity specially for short
spans and high web height to width ratios.

SUMMARY AND CONCLUSIONS

The simple beams are affected by coping their
ends and loading them at the top flange. The
problem is clear for short spans and with high web
height to thickness ratios because this is causing the
moment capacity to be lower than the expected
value. The difference between the two values may
reach about 75% which may not be ignored by any
means and may, easily, shift the designed section to
an undesired domain.

In order to overcome this problem the coped end
must be fully detailed so that the, relatively free to
move, flange end must be restrained. Bracing
elements or a vertical stiffener combined with a
horizontal one at the borders of the cope may be
used. If the situation does not allow for any
modification to the cope, the cope effect must be
considered. The position of the loading is to be
carefully examined. If the load is moving with the
section while it is deforming, the effect of load
position must also be considered.
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