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ABSTRACT

A simple method is proposed for minimizing the maximum absolute error resulting from the function
generating mechanisms designed by the precision point approach. The prescription of the desired
function and the input-output relation of the mechanism are used in optimizing the mechanism
parameters. The method may be applied to the optimization of any planar or spatial function
generating mechanism for which the input-output relation can be expressed as a continuous function.
Two numerical examples are included to illustrate the application of the proposed method.
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INTRODUCTION

Different techniques have been developed for
designing function generating mechanisms such as
precision point [1], least square  [2, 3], nonlinear
programming [4] and graphical [5, 6] methods. In the
precision point approach, a number of discrete
points, equal to the number of the unknown
independent parameters of the mechanism, are
chosen within the function generation interval, and
the mechanism is designed to yield the value of the
desired function at these points. The main
disadvantage of this method is that away from the
large -deviation between the

Freudenstein [7] showed that the maximum absolute
value of this error is minimum when the local peaks
of the absolute error within the function generation
interval are equal. T'o synthesize this mechanism, he
developed an iterative optimization technique in
which the precision points are respaced and the
mechanism is redesigned. In the method presented
here, the mechanism parameters, which minimize

- the maximum absolute error are determined directly
by using the desired function and the input-output

" relation of the mechanism without redesigning the

mechanism, which usually includes solution of
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nonlinear trigonometric equations.

THEORY

In the function generation problem the desired
output, y is prescribed as a function of the input, x
for a given interval [x_, X¢]. The prescription may be
in the form of an explicit or implicit function, or a
plot. The generated output, Y is a function of x, as
well as the n independent mechanism parameters, p;,
j = 1 to n. Usually, it is difficult to express this
function explicitly and the input-output relation is
described by an equation in the form,

G(x, Y, Py, Py -» P, =O0. (1)
Both desired and generated functions are assumed to

be continuous throughout the function generation
interval. The error, E is defined by,

E=Y-y. @)

The general behavior of the error curve resulting
from a function generating mechanism designed by
the precision point technique is presented in Figure
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(1) for n = 5. Special cases, such as those which have
extra precision points, are not considered in the
present work. The error is zero at the precision
points, and has n + 1 peaks with alternating signs at
points (x; , E;), 1 = 0 to n, where X9 =X, and X = X.
At the peaks between the precision points, we have,

(9G/ax);

4Yy i=1ton-
(aG/aY) (dx)"(l Iton-1), 3
where subscript 1 indicates that the derivative is
evaluated at the i th peak point. For manipulation
convenience, the absolute values of the error at the
peak points, thereafter referred to as the peak
values, are expressed as,

A, = SUE,, (i=0ton), “)
where,
S = E(;/ lEol ’
U, = (+1).
¢ .

X
x

Figure 1. General behavior of the error curve for
n=>5 ‘ F

Now, we assume that th‘ mechanism parameters
are given small finite increments, ép; , j = 1 to n,
from their initial values, and we ﬁndJ the effect of
this perturbation on the peak values. In this respect
the peak points are divided into the following two
groups:

a) First Group (x = x; , x,)
At these points, x; and vy, are not affected by the

perturbation. Ignoring the | partial derivatives of G
with orders higher than thel: first, the change in the
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i th peak value, 8A, can be derived from equations
(1), (2) and (4) as,

SU, & 3G., .
SA, =~ ,8p,,(i=0,n). 5)
= oo, 2 Cap P

b) Second group (x = x;, i = 1 to n-1)
In general, the perturbation causes x;, y; and Y; to
be given increments 0x;, dy; and 8Y;. Ignoring the

higher order denvatives of y and G, the equations
relating these increments can be writtenas,

. )bx,(lltonl), R

oG oG -~ 9G .
= — =2),8p,=0,(i=1ton-1). (7
(ax)iasxﬁ(C_N)iznq«»f\;(apj)i p;=0,G=1ton-1). (7)

Eliminating 6x; from equations (6) and (7), and
substituting by equation (3), we get,

—-—6Y dy.)+
()( ¥y E(ap

j=1 ]

);8p;=0,(i=1ton-1). (8)

Using equations (2) and (4), equation (8) gives,

Ff— i

. Op,,(i=1ton-1). (9
' (aG/aY)|j=1 j) pl (l a0 )

Equations (5) and (9) show that the changes in all

peak values are related to the increments of the .

mechanism parameters by the same relationship.
From equations (4), (5) and (9), the new peak values
are expressed as,

Z(

/=SUE.
A1 l 4 (aG/aY)”l

)i8p;],(i=0ton).
i (10)

The accuracy of this equation  depends on the
magnitude of the increments of the mechanism
parameters, which were assumed to be small, as well
as the higher order partial derivatives of the desired
and generated functions, which were disregarded in
the foregoing derivation.
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OPTIMIZATION

It is shown in Ref. [7] that, the maximum absolute

| error of a function generating mechanism throughout

a certain function interval is minimized

if the

. absolute values of the error at its local peaks within

the interval are made equal. Based on this rule, the

| goal of the optimization algorithm is to determine

the mechanism parameters which yield an error
curve with equal peak values.

In general, the peak values may differ widely from
each other. In such cases the increments in the
mechanism parameters necessary for optimization are
not small enough to apply equation (10) with
acceptable accuracy. Therefore, the optimization is
carried out in N successive steps whereby the
deviation between the peak values is reduced
gradually untl it reaches a final value, which is
almost zero. The number of the optimization steps
15 chosen in view of the deviations of the peak
values from their mean value. In each step only
small reduction in these deviations is considered so
that the required increments of the mechanism
parameters are sufficiently small for the application
of equation (10). Thus, the deviation of the i th peak
after the m th optimization step may be expressed
as,

A/-M'=R _(A,-M), (i=0 ton) ,  (11)
where,

A;and A= values of the i th peak before and
after the m th optimization step,

M and M’ = mean values of the peak values
before and after the m th
optimization step

R, = the desired reduction ratio of the
deviations due to the m th

optimization step, (R,<D).
Substitution by equations (4) and (10) into equations

(1 1) gives,

M"—RmM=SU [E(1-R)

}:(

(aG/aY),)d

(12)

) 8 pj] (i=0Oton).
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MM’ and S can be eliminated from the n+l
equations represented by equation (12) to yield n
equations represented by,

an (ﬁ) p;]

U. .l—
B (aG/aY).,l ;"
E,(1-R )+ E(aG> 5p,=0,
¢ (aG/aY)o,=1 i’
(i=1 to n) (13)

This equation can be expressed in a matrix form as,

B] (VI = {C}, (14)
where,
__(9G/3p), _Ui(9G/9py; , (15)
Y (3G/aY),  (3G[IY);
{(VIT = [8p,, &P, -» OP,] (16)
C,=(1-R)E, - UBE) . (17)

In order that the deviations of the peak values from
their mean value decrease gradually and almost
vanish after the last step of optimization, ratio R is
reduced uniformly in the N steps to its final value,
which is zero. This gives,

R, =N

The procedure of the optimization algorithm may be

described as follows:

1. Derive the expressions which give dG/dY and
dG/ap;, j = 1 to n, by differentiating the equation
describing the input-output relation of the
mechanism.

2. Do the following for the N steps of optimization
(i.e. form = 1 to N):

a) Determine x , Y and E at the points of
maximum absolute error by using equation (1)
and the description of the desired function.

b) Using the values of x and Y obtained above,
calculate [(3G/8Y)i and (BGlapj)i, j=1ton],i=

- m)N . (18)
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0 to n.

¢) Calculate R, from equation (18).

d) Calculate the elements of [B] and [C] from
equations (15) and (17).

e) Solve equation (14) to determine {V} which
defines 6p;, j = 1 to n.

f) Calculate the new values of the mechanism
parameters (pj+6pj, j=1ton).

3. Determine the peak values resulting from the
optimized mechanism.

EXAMPLES

In order to check the accuracy of the proposed
method, the optimization algorithm was applied with
different values of N for optimizing various function
generating mechanisms. In all cases, five
optimization steps were found sufficient for
producing a mechanism with almost equal peak
values. Two examples are presented below to
illustrate the application of the proposed method. In
these examples, the optimization algorithm was
applied in five steps. The input and output were
represented by input and output angles 6 and ¢
(Figure (2)), which are defined by,

0=0 + Af =0 5
X ~— X,

¢=0,+22 (v-y),
Ye~Ys

where,

Yo ¥¢ = starting and final values of the desired
output,

by ¢ = starting values of the input and desired
output angles,

Af, Ap= ranges of the input and desired output
angles.

Example 1
A four-bar mechanism (Figure (2)) was designed in
Ref. [7] to generate the function y=sin(x), for the

interval 0° <x<90°, with Af=A¢=90° , using
5-point synthesis, which yielded,
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aj/ay = 2.075,
6, =-63.75°, ¢,

aZ/a4 = 2411,
= 254.05°.

asfa, = 0.757,

S

Figure 2. A four-bar planar mechanism.

The error curve resulting from this mechanism is
represented in Figure (3) by a dashed line.

0.004
€
0.002
A /\ )
0.000 Y
-0.002 zh\/ \\/

Figure 3. The error curves of Example 1.

In order to apply the optimization algorithm, the
loop closure equation of the mechanism was written
as [1],

p; cosB - p,cosd + p; - cos(@ - ¢) =0

where,

P, = a/a,,

1}

P, = a/a,,

NS N B
a — 8 *a; +a

2a1a3

P;
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The fourth and fifth mechanism parameters were
p4=0; and ps=¢.. The partial derivatives of G were
derived from the loop closure equations as,

3G _ Adlp, sind - sin® - ¢)]

dY o085 Yt Yy

cosO ,

-cos ¢ ,

-1,

- p, sinb + sin(® - ¢) ,

— =P, sind - sin(0 - ¢) .

" The specifications of the optimized mechanism
- were,

fag = 1.836,  ayla, = 2.240,

i =-65.02° ¢, =251.28°.
The error curve produced by this mechanism is
resented in Figure (3) by a continuous line. The
re shows that the maximum absolute error within
function generation interval has been reduced to
% of its original value. The same results were
tained in Ref. [7] by respacing the precision points
redesigning the mechanism four times. Another
ir-bar mechanism was designed in Ref. [3] to
nerate the same function, using an improved least
Juare method, with nineteen design points spaced
it 5° intervals. The maximum absolute error
sulting from this mechanism was 20% greater than
hat produced by the optimized mechanism. This
icates that the least square methods do not
inimize the maximum absolute error.

az/a, = 0.694,
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Example 2

The RSSR spatial mechamsm represented in Flgure
(4) was designed to generate the function y-—x for
the interval 1<x<3, using 3-point synthesis, with
ag=as, 0,=0, =-45°,A0=A¢=90°. The mechanism
unknowns were a,/as, a,/as and az/as. The precision
points were chosen at x=1.2, 2, 2.8. According to
Ref.[8], the loop closure equation of the mechanism
can be written as,

p,sinb -p, sin¢ + p, - cosB cosd =0,

where,
P = aa;,
p, = asa; ,

2_,2 .2 .2 2
A —a; *a; *ay *tag

Figure 4. The RSSR spatial mechanism of Example
2.

Substituting by the values of x and y at the precision
points, the loop closure cquatlon yielded three
simultaneous  equations in the mechanism
parameters, p;, p; and p;. Solving these equations,
the link proportions were specified by,

ajfas = 0421, ayfag = 1472,  azfag = 0.412.
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In order to apply the optimization algorithm, the
partial derivatives of G were derived from the loop
closure equation of the mechanism. The results
were,

oG _Ad( - p, cosp + cosB sing)

EY— Yf-y.
E. = sinf 5

Py

oG ; oG

— = -sinp ,— =1.
%, 9ps

Application of the optimization algorithm gave,
a;/ag = 0.382, a,/as = 1.465, azfag = 0.377.
The error curves before and after the optimization
are represented in Figure (5) by dashed and
continuous lines respectively. The figure shows that
the maximum absolute error has decreased to 28% of
its original value.

-0.3 :
Figure 5. The error curves of Example 2.
CONCLUSIONS

The following conclusions may be drawn regarding
the proposed method of optimization.

1. Five optimization steps are sufficient for

optimizing mechanisms with parameters far from
" their optimal values.

2. In general, the method gives results better than
those of the least square methods, although in
these methods many design points are
considered.

3. The method is simple, since it does not require
redesigning the mechanism, which usually
includes solution of nonlinear trigonometric

A 164

equations.

4. The method does not require expressing the

desired function explicitly, and therefore, it can
be applied when this function is prescribed by an
implicit function or a plot.

5. The method is general, and can be applied to any
mechanism for which the input-output relation
can be expressed in the form of equation (1).
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