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| BSTRACT

This paper investigates the inplane motion of a slewing thin flexible beam clamped at one end to
a rotating rigid hub. Both flexural and axial effects are included in the denived model. The paper
presents an active parametric control which uses the beam tensile stress as a distributed time-
dependent parameter to suppress the transverse vibration. The control is carried out by applying an
axial force at the beam free-end. This force is determined according to a synthesized asymptotically
stable modified bang-bang control algorithm. The optimum values of the axial control force are
evaluated in terms of beam dimensions and material properties. Numerical simulation of the closed-
loop control system showed that, in the absence of passive damping and uncontrolled slewing time,
the amplitude of vibration is reduced to 18% of its uncontrolled value. The proposed control is

application.
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NTRODUCTION

Development in large space structures has been
cusing on nonlinear rigid-body motion coupled
ath flexible body elastic vibration. Recent research
) large angle maneuvering of flexible spacecraft,
ddressed the structure model of a flexible beam
lamped into a rigid hub mounted on a motor shaft
t one end. The motion of this system can serve as
‘model of robotic arms, helicopter blades, turbine
lades, spacecraft antenna, and solar panel.

“The control design for either rigid-body rotational
naneuver or vibration suppression of a flexible
anipulator has been considered by many
vestigators [1-10).  Although most of the
vestigations were aimed at some typical maneuver
ussions, both the complexity of the control law
mulation and the associated computational burden
‘ sented the major hurdle to successful hardware
nplementation. Murotsu et al. [11] suggested that
controller design for vibration suppression of
y flexible structures should be based on a two-
control architecture: high-authority control
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proven to be efficient in computation, concise in formulation, and effective in hardware realizable

(HAC) and low-authority control (LAC). HAC is
designed so that the controller perform the given
mission and the subsequent vibration be suppressed
by LAC. Motivated by this approach, Liu and Yang
[12] proposed the constrained motion method as a
high-authority controller. It was proven to be
effective in achieving the rotational maneuver.
Two approaches to the active control of vibration
in flexible beam, LAC, are currently considered:
Modal control, and Distributed parameter feedback.
Modal control uses a reduced order finite
dimensional model. This model is obtained by
considering and retaining only the first few arbitrary
number of vibrational modes. This choice is based
on the belief that the energy content in the higher
modes is insignificant compared to the lower modes.
Once such a reduced order model was derived,
conventional control strategies, including regulator
theory [13,14] and pole-placement method [15], were
applied. However, such modal truncations may lead
to instabilities due to the phenomenon of spillover
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[14,16]. Spillover is a manifestation of either the
neglected modes becoming unstable, the controller
modes becoming unstable, or both. In distributed
parameter feedback control, the system model
retains an infinite number of modes. Plump et al.
[17] applied distributed piezoelectric-polymer for the
active vibration control of a non-rotating cantilever
beam. Balles et al. [18] introduced active parametric
control and studied a finite number of modes for
finite observation. Habib and Radcliffe [19]
employed active vibration control for a simply
supported Bernoulli-Euler beam using one of the
distributed, time-dependent parameters of the
system. Liu and Yang [Z0] presented a coupled
active damping control and optimal control for
vibration suppression of rotating beam during and
after the slewing motion. Although the method was
shown to be effective in reducing both the transient
vibration and the settling 1ime, many computations
for the optimal feedback gain were required. From
the previous review, it is clear that there 1s a need
for a control law that minimizes the computational
burden, yet satisfies the performance required. The
present study is directed toward this goal.

In this paper, the vibration control of a rotating
thin flexible beam is studied. A coupled model for
the hub-beam system that includes axial and flexural
effects is derived. An active vibration control, using
the axial force as a distributed time-dependent
parameter of the svstem, is employed.
Asymptotically stable , mcdified bang-bang control
is applied as a control algorithm.

HUB-BEAM SYSTEM MODEL

The plane mechanism shpwn in Figure (1) consists
of a rigid hub of radius r,, mass moment of inertia
I}, and a flexible beam of'length L, cross sectional
area A, and constant matgrial properties. The hub
angular rotation is 6(t) mepsured counter-clockwise
with respect to the x-axij of the fixed reference
frame. 'The transverje and longitudinal
displacements v, and u, regspectively, are measured
with respect to the current body frame. It is assumed
that - the plane sections remain plane during
deformation. The effects of shear deformation, rotary
inertia, and passive damping are assumed negligible.
An energy method is er:ﬁnployed to generate the
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governing equations of motion. ,
Considering Figure (1), the position vector r(x,t)
be written as

xt) =@, +x +u) e +((V)e,

where ey, €;, and e; are the unit vectors defining
body frame.

Noting that €, =éezandé2 =- éel , the velocity vec
is given by:

tx)=[ u, - vh ] e, + I, +x+u)d + v]e, (

O

Figure 1. Hub-beam system.
where u, and v, are, respectively, the partial
derivatives of u and v with respect to time.

The total kinetic energy of the system, T, is:

y O RS 3

where
T,p= 05 I, 6° @)

Ton = 05p [ [Ti.1 axda

Substituting Eq.(2) into Eq.(5) ,then Eq.(3) yields,

T=051,6°+05pA [ [u2 + v2 + (vO)? +

()
(r,+x+u)? & - 2vBu, + 20(,+x+u)v] dx
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Since the beam is assumed to be linearly elastic, the
total potential energy is given by:

V=05 [" @YEA) dx + OS EI [¥ v, 2 dx(7)

The first term in Eq.(7) represents the total strain
‘energy. p(x,t) is a parametric time varying force
resulted from a time dependent compression force
- P(t) acting on the beam end. The axial-strain-
displacement relation is given by [18] as:

p/EA=u_+05 v’ (8)

- The second term in Eq.(7) corresponds to the total
bending energy. Considering Hamilton’s principle,

f:’(aT—5V+6W)dt = 00 (9

- where 6W 1s the work done by the torque 7 at the
hub, and it is given by:

3W =1t 36 (10)
- Computing the variation §T and 6V from Eqs.(6) and

(7), and substituting into Eq.(9) results in the
following Euler-Bernoulli’s beam equations

Elv, - (pv,), + pAlv, +26u,+(r, +x+u) -v6"] =0(11)
P+ PAL@, +x+u)b* +v8 + 28v, - u,1=0 (12)
3 L s 2 3

WO = [, + pA[" IV} + @, +x+0)? Jdx]

+ 2048 [¥ vy + ugr, x+w)] dx (13)
+ pA fol' [(r,+x+w)v, - vu ] dx

with the boundary conditions

u0,) = v(O,;t) = v,(0,0) = 0.0
Vu(Lst)
EA [u,Lt) + 0.5(v,(L,H)] = P(Y)

and initial conditions

= VLt = 00 (14).
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v(x,0) = ux,0) = v(x,0) = u(x,0) = 0.0 (15)
CONTROL STRATEGY

Active Parametric Control theory is based on using
one of the time-dependent distributed parameters to
control transverse displacement. Equation(11)
contains the parametric axial tension p(xt) as a
coefficient. If the time-dependent force P(t) is
applied at the free end of the beam with an
appropriate control algorithm, the induced parametric
force p(x,t) can be used to control the beam
transverse stiffness and to form an asymptotically
stable closed-loop system. Liapunov function will be
used to derive a control law for p(x,t) which
guarantees asymptotic stability.

The main difficulty with distributed parameter
systems is the identification of an approprate
Liepunov function, LY. Liepholz [21] showed the
close connection between Liapunov’s stability
criterion and the classical energy criterion expressed
via the Hamiltonian,H, for autonomous, dynamic
continuous system. He proved that for a
nonconservative system, if LY is chosen as the
Hamiltonian, then

dLY _ dH_

dq 1
dt dt fV., ¢ dt oy 4e)

where Q is the vector of the generalized force, q is
the generalized vector, and V is the volume of the
system. Choosing LY as the total energy of the
rotating beam system,

LY =T -V (17)

Form Egs.(6) and (7), one can notice that LY is
positive definite which admits an infinitely small
upper bound in the neighborhood of the equilibrium
state of the beam. The time derivative of LY is:
Y 168+ [ “pAlug, +vy, +vw 8t +v20B+(r, +x+upud
fo [pAlup,+vy, +vw 8 +v (r, +x+u)u,
+(, +x+u)’08 -vu, 6 -vu b -vu b+, +x+u)v,0 (18)
+(x, +x+u)v,8+u,v,0] +Elv_v,_ +pp/EA] dx

Using the constitutive relationship (8), integrating by
parts, and applying the boundary conditions (14)
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yield:

JLY
ot
+[pAlv,-v8 +(r, +x+u)d+26u]+Elv,__ ~(v)),lv, (19)
+[pA[vO+(r, +x+u)?+2(1, ~x+u)Bu, +(r, +x +u)v,

+2v6v, -vu 1]61dx +1,68 +(pu 5 +(®v,v)5)

- oL [pAlu,-(r, +x+u)8’-vB-2v8] -p, Iy,

Applying the asymptotic stability condition (16),
then
LY _

ot
Substituting equations of motion (11-13) in Eqs.(19)
and (20) yields,

@ u) + (@ v, v)s < 00

Tt 6 (20)

noting that
u 0.t = 0, v,(0) =0
= POLY + v L v@LH] < 00 (21)

Only at equilibrium state, the term CP,[ CP=
u(L,o+v (L, o)v(L,b)], is equal to zero. Therefore,
considering P(t) as any negative function of CP will
yield to asymptotic stabilitcy. The modified bang-
bang control force algorithm shown in Figure (2)
satisfies the condition in Equation(21). In this case,
both the axial and transverse velocities at the free
end of the beam are observed and then the control
force is evaluated according to Figure (2). The
control structure is presented in Figure (3).

DISCUSSION OF RESULTS

A computer simulation was performed to examine
the control algorithm on rest-to-rest maneuver. The
dimensions and material properties of the hub-beam
system, used in the calculations, are listed in Table
(1). Equations (11) and (12), which represent the
slewing motion of the flexible beam, were solved
using an explicit finite difference scheme. A mesh of
10 nodes was considered along the length of the
beam, and convergence parameter, At [Ax)? =
0.00086 s/mz, resulted in a stabilized solution ( the
time increment was 5%10™ s). The hub-rotational
speed was approximated with an angular velocity
profile similar to that in Figure (4). The results were

obtained at maneuvering speeds of 0.15 rad/s, 0.
and 0.45 rad/s. A modified bang-bang control fo
(Fig.2) was implemented with control f

saturation magnitude, a, varied from 0 to 150 N
€ =3 *108 mys.

Pi1y

= :g ‘
1

' Y4

; l
uy F Ve vy

Figure 2. Asymptotically stable, modified ban;

bang, control force.
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Figure 3. Active parametric vibration control

structure.
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Figure 4. Angular velocity profile.
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Figure (5) shows the tip deflection of the
uncontrolled beam, =0, at different hub speeds. It
appears from the figure that the amplitude of the
vibration increases as rotational speed increases.
Meanwhile, the increase in rotational speed results
in an increase in the centrifugal force which reduces
beam effective stiffness and lowers the frequency of
the vibration. The frequencies

Q=015 RADS G=030 RAD/S

TP DEEFT ECTION  mun

-~ I; 'Y I} 1 i
0 ] 2 3 4 S
TIME . S

Figure 5. Tip deflection for o=0.0.

Table 1. The physical parameters of the Hub-
Beam System.

Material Aluminum
Density, p 2710.0 kg/m°
Young’s modulus, E  |71.0¥10” N/m*
Beam thickness 8.467*10" m
Width 1.905*10“ m
Length, L 0.762 m

Cross sectional area, A [1.613*10> m*
Moment of inertia, I  [9.3631*10°"° m"

Hub mass moment of [1.7628*%107
inertia, I kg.m?

0.09525 m

Hub radius, r,

of vibration are 2.80 Hz, 2.15, and 1.70 Hz at 6§ =
IS rad/s, 0.30, and 0.45 rad/s, respectively.

‘Upon implementing the control strategy, the tip
esponses with o« =0, 25, and 100 N are illustrated in
figures (6), (7), and (8) for 6 = 0.15, 0.30, and 0.45
ad/s, respectively. The figures indicate that the
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amplitudes of vibration decreases as the magnitude
of the axial control force increases. At  =0.15 rad/s,
the maximum tip deflections were 2.40 mm, 1.00,
and 0.44 mm at o =0, 25, and 100 N , respectively.
At 8 = 0.3 rad/s, the amplitude of oscillation decays
from 4.8 mm at a=0 to 0.8 mm at =100 N. Also at
6 = 0.45 rad/s, the maximum tip deflection at a=100
N was reduced to 18% of its uncontrolled value. The
saturating nature of the bang-bang control dominated
the character of the control forces as shown in Figure
(9) because of the high frequency components in the
controlled response. It can be noticed from Figures
6 to 9 that the vibration was not completely
suppressed after slewing motion. That is because the
material damping was not incorporated in the
developed model. Also the switch time and final
time of the maneuver mission shown in Fig. 4 were
not adjusted for optimal slewing motion. Since the
feasibility of the developed control strategy is the
main objective of this paper, neither the effect of
the passive damping nor slewing time is included in
the study.

*

® = 0.15 RAD/S

.am

TIP DEFLECTION

0

0 ] 2 3 4
TIME . S

Figure 6. Controlled tip deflection at §=0.15 rad/s.

® = 0.3 RAD/S
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<
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v
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Figure 7. Controlled tip deflection at §=0.30 rad/s.
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Figure 8. Controlled tip deflection at §=0.45 rad/s.
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Figure 9. Controlled force, generated at various
control levels, a.

In order to evaluate the optimum value of the axial
control force, the transverse responses of the beam-
tip were investigated for o varied from 0 to 150 N at
6= 0.15 rad/s, 0.30, and 0.45 rad/s. The resulted
maximum tip deflections were plotted in Figure
(10). The figure suggests rhat there are more than
one optimal value for o at 54.33 N, 68.67, 103.0, and
137.33 N., and they do not depend on the rotating
speed. To realize these values, define P* as

P*=p AL (L w?) * 100

where w is the natural frequency of the transverse
vibration of the cantilever. According to [22], w is
given by:
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_ x? E1l
w_ —
4L \pA
P* =
16 L?

Using the values in Table (1), P" is equal to 68
N. Considering P/P* as a nondimensional ax
control force, then,

P 1
o= —=,1,1
(P‘)opumm D)

From Figure (10) it can be noticed that, for the sar
mancuvenng speed, the maximum tip deflections
P/pP )optlmum > 0.5 are equals and less than t
maximum tip deflection resulted at P/P" = 0.5.
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Figure 10. Maximum tip deflection at various g,

different maneuvering speeds.

CONCLUSIONS

The structure model of a thin flexible be:
connected to a rigid driven by a torque motor W
investigated. A set of governing different
equations was denved for the inplane motion of t
system using energy method. The beam w
assumed elastic and both flexural and axial effec
were included in the model. Active paramet
control that utilized beam tensile stress as
distributed time-dependent parameter, was appli
to control beam transverse vibration. Asymptotical
stable, modified ban-bang control algorithm w
synthesized. The parabolic partial different
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equations of the closed-loop control system were
solved numerically to demonstrate the effectiveness
of the control at different maneuvering speeds. The
results showed that the proposed control reduces the
amplitude of vibration to 18% of its uncontrolled
value in the absence of passive damping. The
optimum values of the axial control force were
evaluated in terms of the dimensions of the beam
d its material properties. From an engineering
point of view, the suggested system is simple,
efficient, and can be realized in hardware
implementation.
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