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ABSTRACT

'An approximate series solution' of a nonlinear undamped forced oscillation is obtained. The restoring
force is asymmetric and the external driving force is harmonic. The series solution is proved to be
absolutely convergent and is identical with the exact solution for some particular values of the

constants and initial conditions. The effects of varying the initial conditions, the frequéncy and
amplitude of the external force are discussed. T'o the same order of approximation, our results proved
to be more accurate than those obtained by the method of Bubnov-Galerkin.
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INTRODUCTION

Oscillations are the most general form of motion of
dynamic systems about their equilibrium position.
The method of small parameter is widely used in
the theory of nonlinear oscillations [1], [2], [3]. This
method is based on the fundamental researches of
Poincaré [4]. Further developments were connected
with Russian school of research [2]. Various
phenomena are due to the nonlinearity of the
oscillating system,[5],[6]. Mainly the dependence of
‘the period of the oscillation on its amplitude [1], [7],
[8], the emergence of different harmonics in the
oscillation * [1] , [3], [9], [10] and for a given
amplitude of the forcing function there may be three
distinct response amplitudes with an associated jump
phenomena [1], [7]. There has been different
methods used to obtain approximate solution of
_-nonlinear, oscillations [11], [12]. In [13], they found
| an approximate - series solution of two nonlinear
differential equations previously studied in [14] and
given by
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" with initial conditions
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x(0) = A 3)

x(0) =0 @

where a, 8, A are constants Convergence of their
series solution had been proved. The same method
of solution had been used in [15] and an
approximate solution of a nonlinear undamped
asymmetric free oscillation of the form

£ +3x2-6x+2=0 ©)

with the same initial conditions (3), (4) was obtained.
In this paper we shall get in secton 2 an

approximated series solution of a nonlinear
undamped forced oscillation of the form
. X +ax? +bx + ¢ =P sinot. = (6)

where a,b,c are constants, P, w are the amplitude
and frequency of the external harmonic dniving
force. The initial conditions are the same as given by
equations (3), (4). It is of importance to note that
when ¢, P, are set equal to zero and a is a small
negative quantity equation (6) reduces to the
satellite equation [16]. So when only c is‘€qual to
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zero equation (6) represents the forced oscillation of
the satellite equation. Also it is obvious that the
preciously solved equations (1),(2) and (5) are
nonlinear autonomous differential equations because
the time t does not appear explicitly in these
equations. Equation (6) is nonautonomous and
different kinds of mathematical difficulties are
encountered when we try to get its solution. The
series solution we got is periodic with period T

2 ooy
equal to - Convergence of the solution is proved
®

in section 3. In section 4, the solution is proved to
be identical with the exact solution for particular
values of the constants a, P,, A. Results and
conclusion are presented in the same section.
Comparison of our results with those obtained from
using the method of Bubnov-Galerkin is shown in an
appendix.

2. SERIES SOLUTION

We introduce a new variable u such that

b
= + — 7
u=x 5 @)
Hence equation (6) takes the form
i +au?+d=Pgsin ot ®
where
2
d =~ L ©)
4a
" b :
u0) = A + — (10)
2a
and
u©) =0 (11)

We assume the solution of equation (8) to be a series
in the form

u(®) = ) Csinwt (12)
n=0

where the coefficients C, Cys Cy,... are constants to
be determined.
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Substituting the initial conditions (10) and (11) in
equation (12) we get the values of the coefficients
C, and C; which are

b
— 13
° 2a e
C, =0 » (14)

By forward straight differentiation of equation (12)
we get

ii= m’{z n@+1)C,,,Sin"'wt-Y (@+1)’C,, sin*"'wt| (15)
n=0 n=0

Now using equation (12), u? can be written as

u? = )fj b,sin"wt (16)

n=0

b= CLG #0023 0.0, e (17)

n-o

Substituting from equations (15) and (16)in L.H.S of
equation (8) and equating the sum of the coefficients

* of each sin"wt, n = 0,1,2,.. to zero we get for n = 0,1

the following two equations.
ZCZwZ + aCOZ +d=0 : (18)
w*(6C;-C)) +2aCCy =P, (19)
and for n = 2,3,... the recurrence relation

= —— ok, - ab] (20)

2 0Ya+l)(@+2)
Using equations (9), (13) and (14) in equations (18)
and (19) we get for the coefficients C, C3 the alues

C, = - —[aA% + bA + (] @1)
202 2
and
G, = (22)
 6w?

Using the ‘recurrence relation (20), equations (17)
and (14) we can get for n = 2,3 the values of C4 and
Cs as
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—2_(4e? - 2aC) (23)

&
2 1202

& - 2aC) (24)

It is easy to prove by forward straight calculations
that all other even coefficients Cg, Cg,... are
multples of C, while the odd coefficients Cs, C, ...
are multiples of C;. This is in agreement with the
results of [13] and [15] where P = 0 and only terms
with even coefficients were obtained in their series
solutions. Hence from equations (12), (7), (13), (21),
(22), (23) and (24), the solution x(t) of the
differential equation (6) has the value

°zsin3wt

X)) .= Acr bad(aA? +-bAvo)sindet. ¢
202 6w

) 241 4-(aA2 + bA+c)(dw? - 2aA - b)sin*wt +(25)
®

b ——[90? - 2aA - blsin’wt + ..
120w*
where coefficients of further terms can be evaluated

from recurrence relation (20) and the values of the
coefficients previously obtained.

3. CONVERGENCE OF THE SOLUTION

Summing the recurrence relations (20) for n =
2,3,... to n = o we get

- 236, 26)

(A) n=2

Y @+2)@+1)C,,,-Y n’C, =
n=2 n=2
from equation (17) we have

Zb = (C,C,+C,C,+C,C)+
n=2
(C,C3+C,C+CC+CC )+
(C,C,+C,C;+C,C,+C,C +C C )+

....................

2 Y¥b, = C[C, + C, + Cy+.)- C2
n=2
+C,(C C,+C,+.) - CC
+HCy(C,+C,+C,+..))
+C(C +C,+C,..)

....................

-CC,
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- ThECUEC) - ¢ - 26,

n=2 n=0 n=0

ie Yb =3 C) -cC)-2cc, @V
n=2 n=0

also

E(n+2)(n+1) A E(n+1) a2 =2C, — 6Cy

n=2
and

z.:nzc‘ = in"cll =iy
n=2 n=0
- RH.S. of equation (26) =Y (n+2)n+1)C, ,~ Y n’C,
oo a0 n=0 :

- 2C,-6C;-C,= - TnC, - 2C, - 6C;- C,
T pe0 @n"

Substituting from equations (27)’ and (27)" into
equation (26) we get

-wz}:_j nC, +a(fj C)=a(C2+2C C) +‘w2(2C2 +6C,+CD (28)
n=0 n=0 ) i )

Since R.H.S. of equation' (28) has a definite value,
hence each one of the two infinite series on the
L.H.S. of this equation converges. As a consequence

the series of coefficients Ecn converges because

n=0
each term of this series 1is less  than the
corresponding term of either the series

EnC or the series (E C)? exccpt for n = 0. By

n=0
the same argument, the series solution u(t) given by

equation (12) converges. Hence it can represent a
solution of equation (8).

4. RESULTS AND CONCLUSION

It is importance to note that, putting a = 0 and

P, = o in equation (6) we get the lmcar free
undamped oscﬂlauons of the form ‘
£+bx+c=0 : (29)
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whose exact solution subject to the same initial
conditions given by equations (3) and (4) is.
c c
x@t) = (A + -g)cos Vo ot - . (30)

Thusx(t)=—%ifA=_f.

(-a

This is the same solution that we get from equation
(25); if we puta =0, P, =oand A = :l_)S . Hence our

solution is identical with the exact solution for
particular values of the constants a,P; and initial
conditions A.

Also assuming that the period of the series solution
u(t) given by equation (12) is the same as the period
of the harmonic driving force P(t) was quite justified
in numerous previous studies of linear and nonlinear
forced oscillations [1],[3],[5],[17]. :

Also if we put the constants a,b,c,», and P equal
to 3,-6,2, V3 and o respectively, our approximate
series solution given by equation (25) becomes the
same as the approximate series solution of the
nonlinear undamped asymmetric free oscillation
studied by Eid [15]. »

In our calculations, we let the constants a,b,c and
A to be equal to the forementioned values used in
[15]. Hence , the effect of the external driving force
can be discussed by comparing our results with those
of [15]. In Figures (1),(2),(3),(4) and (5) P, = 1 and
w = ﬁ while A takes the values of 1,2,3,4 and 7
respectively. In Figure (1) , we notice that x(t) is >
A while in Figures (2),(3),(4),(5),x(7) is < A'This is
identical with the results of Eid [15]. '

Also during the interval O< 7< 2 7 in Figures

(2),(3),(4) there are 3 maximum values of x that are

equal A at 7=0 , 7, and 2 7. This is also the same as

the results of Eid [15] . But , the two minimum

value of x at 7 = g and 1

which differ from their results. So the external
driving force causes the nonlinear oscillation to be
asymmetric . The difference between the minimum

values decreases with the increase of A as shown in-

Figures [4] and [5]: From Figure (4) when A=4, x(7)

assumes - ve values this is not the same as he results.

of Eid [10] where x is always + ve Also in Figure
(5),x(7) are + ve again , but number of maximum and

D 20

3. .
Y ™ are not equal
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minimum values of x are increased by two during a
period.

1

|

x[v)

i3 2T Im P Ie
Figure 1. Variation of the amplitude of the non
linear oscillation with the normalized time 7, A=1.
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Figure 2. Same as Figure (1) but for A=2.
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Figure 3. Same as Figure (1) but for A-—-3.
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xiT)

Figure 4. Same as Figure (l)'But for A=4.
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Figure 5. Same as Flgure (1) but for A-7

In Figure (6) A,P_ kept equal to 1 and w is varied.
It is obvious that x (7) and the difference between
the two maximum value of x decreases as w 1is
increased . In Figure (7) A and w are equal to 1 and NE]
respectively, P is varied. When 0 < 7 < w, x(7)
increases as P_ increases and when 7 < 7 < 2 w, x(7)
decreases as P increases Hence from the obtained
results we find that the symmetry of the oscillation
is reduced by the increase of P and the decrease of
A and w. Meanwhile the amplltudc of the oscillation
increases as P, and A'i increases and w decreases.

Alexandria Engineering Journal, Vol. 34 No. 1, January 1995

x {v)

T
>

™ 2m A0 danud W - X

Figure 6. Varation of the, émpliéude of the non
linear oscillation with the normalized time 7 for
different values of driving frequency w. P_=1, A=1,

3 s
cm =], o =2 and i gm2.
w W 2 a w

]

x{x)

r 2T 3w g
Figure 7. Varation of the amplitude of the non
linear oscillation with the normalized time 7 for
different values of the amplitude of the driving force

l)0‘ A=lw = ‘/3-’4"‘ Pog By —isl Poﬂzv -P0='1’
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Appendix

To get a solution of equation (8) using Bubnov-
Galerkin method [7], we require that

2=

[ @, +au} +d -P sinot)u dt=0 (A1)
0

where u (t) is an assumed suitable form of solution
of the equation. Assume this solution to be:

u, = A+ -ib; + asin‘wt _(AZ)
where the value of a_ has to be found, such form of
(A2) has been assumed inorder to sausfy initial
conditions of equations (10).and.(11) and to be
compared with the solution given by equation (25)
when the first two terms are only considered.

Substituting from equation (A2) in equation (Al)
and carrying out the integration we get an algebraic
equation of the third degree for the amplitude a; it
can be written in expanded form as

' 2
ﬁa: fa(A + bz%) + ;_;_ + %a]af
+[—§(Ab + P+ Eb]ao + (A3)
[a(A + z)s + d(A+Z] =
when ab,dw are equalled to the same

forementioned values, and A=1, a_ has only one real
value [18] given by

a, = - 3.92571 (A4)

" The solution given by (A2) after substituting the
‘value of a, from equation (A4) proved to be much
“less accurate than that obtained from equation (25)

for the same value of A and when only the first two
terms are considered.

To get better accuracy by thls method we try again
a solution of the form

= A+ Eb_ + agin‘ot + asin’ot  (AS)

a
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where the value of a; has to be found by
substituting from eqn (A5) in (A1) and carrying out
the integration. We shall get a new third degree
algebraic equation in a;. Thus to get the same
accuracy as that obtained from equation (25) by
considering more than 3 terms requires much more
effort. Other kinds of mathematical difficulues are
present when equation (8) is solved by other
methods such as direct linearnization method or the
Duffing’s method [7].

It is of importance to note that assuming the
solution u(t) of equation (8) in the form given by
equation (12) permits higher harmonics to be
- constructed in the obtained solution given by
equation (25). This is acheived by merely
substitution of %%(1 - cos 2wt) , ( % sin wt - Y4 sin 3 w
t), ... instead of sin? wt, sin® wt , - . Also higher
harmonics are obviously obtained in the solution if
we assume u(t) in the form

ut) = i C, sin not (A5)
n=0

But in this case it is much more difficult to get a
recurrence relation for the C coefficients and to

prove convergence of the series (A5).
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