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Poincaré’s small parameter method and the Krylov - Bogoliubov asymptotic method are among the
number of basic methods used for the study of nonlinear oscillations. Poincaré’s method was
developed in conformity with stationary (petiodic) oscillations [1], although it may be extended to
nonstationary oscillations [2]. The krylov - Bogoliubov method may be used, first of all, for a study
of nonstationary oscillations, but it is, of course, completely applicable to periodic oscillations [3]. In
the present paper, the method of Krylov-Bogoliubov-Mitropolski [4] is modified :to: investigate the
periodic solutions for the equations of motion of a heavy solid, with one fixed point, rapidly spinning
about the major or the minor axis of the ellipsoid of inertia.
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1. INTRODUCTION

Consider a heavy solid of mass (M), with one fixed
point, whose ellipsoid of inertia is arbitrary and its
center of gravity is arbitrarily located. Selecting OX,
OY and OZ to represent the fixed frame in space
and Ox, Oy and Oz to represent the principal axes of
the ellipsoid of inertia which are fixed in the body.
Assuming that at the initial instant of time the
principal axis z of the ellipsoid of inertia makes an
angle 6, # ku/2; k=0, 1, 2; with the vertical, and
that the body spins. about this principal axis with a
high angular velocity r,. Taking p, q and r to
represent the projections of the angular velocity
vector of the body on the principal axes of inertia, 7y,
'y/ and V/ to be the direction cosines of the Z-axis.

Remembering that g is the acceleration of gravity; A,
B and C are the principal moments of inertia; X, y,
and z, are the coordinates of the center of mass in
the moving coordinate system. The general
differential equations of motion and their first
integrals can be reduced to the following
autonomous system with one first integral [5]:

ﬂ2+w2p2 :ﬂzF(p29pZ’72a72’ﬂ),
V2+v2 =k (P2l A2k ()
2. .2 . 2 " n_'z"'.'
Y242+ 20 (VP Y2+ D2 Y2+ S+ (L) =, =15 (2)

where:

g 1.2 . 1 S /-1 5 ; K -1

F=CA; Py +X:0,¥;,-Y,8 Py 1, -V, Ar Ay +a ™)y, 0y 2,07 py - ve, (1-0%) p, - @?pysy, +A, b7 x5, +O() +-,
_ -1 . L2 sy, 7y = e

D =-(1-CPA; PPy Y2+ %, Y2 YoY2 Y22, b le“‘;b P-4 721’22 Le

+v(1-0% (e+e; ¥) - ¥,5, +(1 +B) p,s,, + O(p) +-; 3
Py=Py-Be—Re Yy Yy =Y ~KVP,s G = 'Al_lp.z+ ""Ai‘l(y‘:a Boeiyy) e,
g : 1, g St 1 i
V=Tt BByt = 10 oilsy ¢ ¥ = Ty + 12 (s 5 1) @
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pr=pleyyl.ay=ale\ vl r=rir, v =y 17 v =¥y =Y Iy e =r t(=dde); )

$11=a®3,~P3) +b(Ba, ~PDIAL -2 XL (Y, ~¥5) +Ye ¥y~ Y15

31 =8 (Poy Yoo ~P2Y)) ~bA| : By =P, 725

Sy, =a[V(Pe, -P2) +e(Yy, = ¥,) *€, (Yo =Y + DA [-v, (B2 ~pD) + @ Y (1,, ~ 1) €, (13- 1D1;  (6)
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C-B A-C B-A A B Mgt cyY
Al_ A ’Bl= B s Cl=T,‘Y020,O<'Y;/<1,a=E,b=—C-'-,c2=_C¥_,p,= {_"-’x‘,:ko/’ya:@;,

o

XA, ) z)A,b-a")  1+B,

/ R
2,=k,, P=x;+y,+z,,0’=-A B, e= o2’ o
w

= - 5 e AP i
A .V-l_wz,ez-e1+a 2%, =v-4; ; (7)

here p,, q,,Yo 'yol and v,/ are the initial values of the corresponding variables. Considering r,,is large then

(o]
p is small.

2. PROPOSED METHOD

In this section, the proposed method is applied to
investigate the periodic solutions, with zero basic
amplitudes, for the system (1) when o is positive.
Since the system (1) is autonomous, the following
condition does not affect the generality of the
solutions [5]:

P2(0,0) =p5(0,0) = y,(0,u) = 0. (8)

The generating system of (1) is:

(

Vv =0, 50+ =0, ()

p;

with frequencies w and 1. Let us consider the case
when @ =m/n where m and n are relative primes, for
this case, the solutions of (9) [with the period
T =2mn] are:

Py =a) coswr, ¥5) =b, cost, (10)

where ao* and bo* are constants to be determined.

Supposing that the system (1) has periodic
solutions with the period T, + «, which reduce to
the generating solutions (10) at yu = 0, that is; ac is a
function of p such that «(0)=0. Assuming the
required solutions in the forms:

D 40

N
pr=a*cosy+ Y, u'p, @*,P)+0wN*h),

n=1

N
yz=b*cosp+ Y uhy, (@a*.9)+0N 1))

n=1

with the initial conditions:

p2(0,p) =a* =a, +a*(u),
v2(0,0) =b* =b +b*(n), ¥,(0,u) = 0, (12)

where@ * (#)and b * (1) are equal to zero when p=0.
Taking into consideration the first integral (2) with
the initial conditions (12) to obtain:

0<b) = (1-yHV2(y" )1 ¢ o,
b*(p) = -pvia, +a*(uw]+... (13)

Assuming @ * | and ¢ vary with time according to:

N
a* =Y pra, @*)+o@N*, (14)

n=1

. N

¥ o=+ Y @, @*)+o0WMh,  5)
n=1

: N

¢ =1+Y u"¢,@*)+0G Y. (16)

n=1
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The derivatives are obtained in the forms:
P2= —a* wsing + 0, Y2 =-b* sing+0(p),
. az *
Py=-a* w? cosy +p [w? ___p% -2a* wy cosy-2wA; siny]
oy

2% dA * azp %
+u2[2wA1* -Z(wAz* +AI* Yy siny +A1* cos oy 2
aa* ay da* ay?
a*
+20 Y, pl -a (1//1 +2wyy) cosy-a* A, siny g 1+0(d),
dy? da*
2 * az * a
2= =b* cos¢+pul i ~2b* ¢, cosd]+p?l 72 2 b 1
: a¢’ 3¢
* 2 * 3271* * ¢l 3
~b " LR R g2y b* 4" Plsing]+0 (). (17)
da*d¢ da*

Making use of (6), (11) and (17) leads to:

sl(?) =aa, (cos2¢0 —cosz¢) —bAl_2 ao* 2 0% sin? Y- Zbo* [x; (cos¢, —cos¢) +y; sing],

Sz(‘f) =a, ; bo* [a(cosy,cos¢,-cos Y cos ) +bA1_1w siny sin ¢],

SZ(Z) =alva, 4(cos? ¥, - cos?y) +eb, (cos¢, - cosp)+e b, *2(cos? ¢, - cos’¢)]

+bA1-1[v2ao*2w2sin2¢+a yo > sm¢+ezb sm2¢], (18)

where Y, and ¢, are the initial values of the corresponding functions. Using (3), (11), (17) and (18) the
functions F® and $ are obtained in the following forms:

F© = ClAl'la:st cos ysin? Y +w ao* bo* x; siny sin ¢ +a‘1ao* bo* y(f cos y sin ¢
+<,,»A1—1 (A;+a™)) a, bo* yo/ sin Y cos ¢-z;a'1a: cos Y

~ve,(1-w®)a. cos y-wia cosy{aa,?(cos? y,-cos? y)

-bA;%a) WP sin? Y2 [x] (cos ¢, cos ¢) +y. sin ¢]}
+A1b 'lx; ao* bo* [a( cos ¥, cos ¢, - cos ¢cos ) +bA1—lw sin ¢ sin ¢],
o) = l(Cl ;I)Al'lwa 2 b, * sin2 ¥ sin ¢+..x b (1 cos?2 ¢)+_yo o*zst¢

o @ % lb cos¢+x b1 ‘Z'Alz wla b (1= cosZt[/)cosqS +ve(1-w)
+vey(1-0%)b cos¢—qa b coszxp cos¢+.2.aa b (1+cos 2 y) cos ¢
+%bA 22 *zb * (1-cos 2 y) cos¢ +2x0 bo* cos ¢, cos ¢

*2(1+cos 2¢) +y. b} P sin 29 +a,F b (1+B))[bA;" wsin y sin ¢
+a(cos ¥, cos¢, —cos ycos ¢p)|cosy . ' (19)
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Substituting (11), (17) and (19) into the initial system (1), and equating coefficients of each power of y, to get:

62p i 2a” 24:% . 627 ¥
('Ml?- Py 4= (: yicosy + wl siny, a¢; +1 =2b, $jcosd,
= ,
asz* +p, = 2 sin¢+.‘£. [2wy +_1_w2C 4 la ="2+.‘7.’.:.',v2aa T
a¢2 e @ wz 2 4 144 o 4 (7] o

-z‘: - -ve; (1 —wd)+ %bAl_Zao* Zw4+2w2x‘f bo* cosg, ] cosy

*
= & aa
+ ao*s(a-ClAl 1"°2bA1 2)cos3¢+_gx;A1b’1bo* cos¢,cosy,,
w

N

!/ s,x,1 a4 / % 1
o8y by (5 - my Doos(d=§) -5, 85 by (142
.
1 Ar+a .
2a0? 240 =l

aAI

2bw?

Ycos(¢p +y)

*Yoa, by [1+

Aj+al
9305 b, [+ S Jsin (@ 49,
w

8272*

a¢?

ZCOSZ%

+72* = [2¢2 'zé b~ +%A1—2w2ao* 2(b -1 +ve (1 _wZ) -aao*

—-;-aBlao*z+2x£ bo* cosd)o]bo* cos¢ —-%x; bo* 2 +x;b'1 +ve(1-w?)

*2 .
o sin2é

+(1 +Bl)aao* Zbo* oSy, Cos¢, COS Y - %xc{ bo* ZCOS2¢ * % yo, b
+a, [%Afzwz(l -b)~- ‘;‘aBl +A7 0, (b-1lcos2y-4)}
+I%A{2wz(1 -b)~%a31 -4 Wb (b-D]cos@y+d)}. (@0)

Eliminating secular terms [6] from (20), yields:
Vi =A1* =¢1 =A2* =0,

Yz = %[—%wz CiA e —%wzaao* Zvaa %zl a  ve,(1-0?) -%bA;Zw“ao*z ~2u2x b cose,],

s = %[zjb“ -%A{sz a2 (b-1)-ve;(1-w?) +aa *2(_;.81 +cosy,) -2x] b ¥ cosg, . @1)
Substituting (21) into (14), (15) and (16), and integrating, to obtain (up to the second approximation of p):
a* =cost.=ao*, ’

x2 3 * 2

-2waawl+ /a'1
o Z o zo

¥ =0T +%p2[—%w ClAl—la w! +ve1(w'1 —w)—-zlibAl—zwz’ao* Z—wa; bo* cos¢, 7,

¢ = 1+%u2[zj b -%A{szao*z(b ~1)-ve,(1-wd) +aa, X1 +.;_Bl) ~2x! b} 11 (22)

From the above results, yields:

W0 =y,=0, ¢(0)=¢,=0. (23)

On the use of (22) and (12), then a * (u)begins from terms of order greater than ,,LZ,. Substituting (21) and
(22) into (20) and solving the obtained equations, then using (11) and (13) to construct p2and vy,
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Starting p,and vy,, using (4, (18), (22) and (23) to
obtainpy, qy,71,71» 71/ and 'Yl//’ taking into
consideration the initial conditions (8) and (12) with
w is rational and does not equal to %, 1, 2, the first
terms in the expansions of the periodic solutions
(with zero basic amplitudes) of the system (1) can be
expressed in the following forms:

/
p I +perh  cosT+e
L ’
q = ZAO +M82A1-1bo* sing +-,

1
ri =1-ub) [x(f (1 -cos) +y; sinT]+-,
Y1 =b0* COST + -,

‘y{ = -bo* SINT + -,

n 21y * 1./ 1,.x2 7, a-b
v1 =1+plb, (1-a) xo+§bo zo(m)
+bo* (1 —b)'ly; sin‘r—bo*(l —a)'lx(f cosT
1,*2 /. a-b
-8} zo(a+b—)1)00521']+---, 24)

and the correction « of the period is:
olp) =2plwnlbx) -2l 1+ . 25)

The expansions (24) and (25) agree with (2.30) and
(2.31) of Arkhangel’skii [5], that is; the method
proposed here for treating a quasilinear autonomous
system of two degrees of freedom and one first
integral gives asymptotic representations in
agreement with those obtained by using Poincaré’s
small parameter method. The geometric
interpretation of motion, by means of Euler’s angles,
showed that it is possible to determine the six initial
conditions at which the body will perform a pseudo-
regular precession [5]. The expressions of Euler’s
angles depend on four arbitrary constants.

3. CONCLUSION

The proposed method has an advantage in that
1. The dependence of the solutions on the
independent periodicity conditions [7] need not
be specified a priori, and also, in that the criterion
of eliminating of secular producing terms

introduced for the determination of the arbitrary
funcuons that appear in the expansions.

2. Poincaré’s method requires the convergence of
q g

series in a small parameter which represent
periodic solutions but in the description of the
Krylov-Bogoliubov -Mitropolski method it is
emphasized that the question of the convergence
of small parameter expansions does not arise at

all.
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