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ABSTRACT

A closed form analytical method is introduced to predict the behavior of axially loaded single pile.
The versatility of the method is checked versus two field tests together with their finite element
solutions. The method is shown to be capable of producing accurate results. It is valid for floating
"friction", end bearing, and piles supported on compressible bearing stratum . It is also valid for the
case of layered soil and piles with varying cross section. The relation between the pile movement
and the soil resistance " skin friction" is introduced through using the subgrade reaction or the t-z
method, while the relation between the tip movement and the soil reaction is introduced through
using the p-z method. In general, the relation between the soil resistance and the displacement may
be introduced using any suitable form, analytical or tabulated. The soil reaction, the axial load and
the displacements along the pile is obtained using a single formula. The share of the load transmitted
to the bearing stratum, the displacement at the tip and the top of the pile are obtained using the
same formula. Finally, the method takes care of the cases with local yielding of soil along the pile
and yielding of the underlaying stratum. It treats both linear and non-linear cases. No matrix

1. INTRODUCTION

In general, finding the ultimate load of a pile is not
always sufficient to ensure functional operation of
the supported structures. The load-settlement
relation must be calculated to ensure adequate
control of the allowable deformations. Field and
laboratory loading tests are often used to determine

load carrying capacity and-load-settlement relation

with the restriction that; results apply for one site,

one pile length, beside they are expensive.

Therefore, there is a demand to introduce general

procedures, numerical and analytical, that permit

computing the load-settlement relation and the
bearing capacity of the piles.

Generally, the behavior of axially loaded piles is
predicted using on of the following methods
(Poulos,1977):

1. Load transfer method; which employs measured
relationship between pile movement and soil
resistance (Coyle and Reese, 1966),(Kiousis and
Elansary 1987).

2. Theory of elasticity; which employs the equations

of Mindlin (Poulos and Mattes, 1969), (Poulos
and Davis, 1968), Butterficld and Banerjee, 1971).
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inversion is needed. Also, the memory requirements is independent of the number of layers.

Keywords: Piles, Axial loading, Linear, Nonlinear Layered.

This approach provides solutions to many
practical problems but it becomes difficult if such
factors as nonlinear soil behavior and layered soil
must be included in the analysis.

3. Numerical methods; such as the finite difference

method (Meyer, Holmquist and Matlock
1987),the finite element method (Desai,1974),
(Randolph and Worth 1966), the boundary
element method, and the finite layer analysis
(Lee and Small, 1991).

In this paper, an analytical method that can handle
layered soil and different conditions of the pile;
floating "friction", end bearing, and piles supported
on compressible bearing stratum, is introduced.

2. EQUATION OF MOTION

Select a coordinate system so that the positive
direction of the vertical axis z is directed upward.
The differental equation for equilibium of a
vertical pile segment coinciding with the vertical
axis, and subjected to axial load at its top and
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embedded in a soil mass with tangential subgrade
reaction K, force per unit length of the pile needed
to produce unit displacement, is given by

ku + 9N

z

0 8))

where,

z distance along the pile

u axial displacement of the pile,

N axial force, and

K force per unit length of the pile needed to
produce unit displacement with

N =-EA & @)

where,
EAp the axial rigidity of the pile.
From (1) and (2)

-%: -2u=0 3)
where
12 - k

“The general solution of (3) is
u = A sinh (Az) + B cosh (Az) 4)

where

A and B constants of integrations.

It seems natural to mention the following:

1. While developing equation(1), it is assumed that

- the movement in the pile at any point is related
only to the shear stress at that point and is
independent of the shear stresses elsewhere along
the pile. This limitation is inherent in load
transfer methods utilizing tangental subgrade
reaction model.

2. In obtaining equation (4), it is assumed that K is
constant. In reality K is a function of, among
others, displacement level, distance measured
from ground surface, method used to drive the
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pile, lateral earth pressure. The present method,
by its nature, takes care of this imitation.

3. LAYERED SOIL

To solve for the case of layered media, consider n
layers with thicknesses L, L,,...,.L., with L; next
the ground surface, and subgrade reactions
k{,kp,-...k,, respectively. The axial rigidity of the pile
at layer 1 is EA ;. The subgrade reaction "spring
constant” for the underlaying stratum is Kg, (defined
as the force required to produce unit displacement
at the pile tip).

. Each layer has its independent coordinate system
with the origin at the bottom of the layer and the
positive direction of the vertical axis z; directed
upward.

The behavior of the pile in each layer is governed
by an equation similar to (3), with a general solution
similar to (4)

u, = A, sinh (4,z) + B, cosh (4,%) 8]
where
A, and B; constants of integration corresponding to

the i? layer
2 running coordinate along the i layer, and

A§=B—‘TA:

The relations connecting the 2n constants A,
through B_, must be established. The continuity at
the interface between any two layers, i and i+l
requires

B, = A, sinh (4;,,L;,,) + B, cosh (3, L;,,) (6)

Although, the displacements are measured in terms
of local coordinates z, the global continuity is
satsfied by (6).

The equilibrium condition demands

Aj=a A, m(_lm L.)+«,,B,sioh(A,L,) (7)

with
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Eiol :l_p” liﬂ

®)
EA, 1,

ina matrix form (6) and (7) can be written as

Sl
B, B,
where the transfer matrix [C;] is given by

a,,, cosh (A, L;,))
ﬂ..ﬂh (liq-l I"i+1)

;. sinh (A, L;,))
cosh (li,l L”l)

)= (10)

From (9), it can be concluded that

A A,
B C, (11)
B, B,
where the global transfer matrix [C] is given by

[Col = [C)] [C] ....[Cy,] [CJ] (12)
4. BOUNDARY CONDITIONS

To find A; and B;, (i=1,2,..,n), the constants of
integration, first consider the equilibrium at the
pile’s head. The axial force in the pile is given by
(2). From which, the axial force at the pile’s head N,
is given by

N,=-EA,; ;[ A, cosh(3,L,)+B, sinh(, L] (13)

At the pile’s tip, three cases may occur. Firstly,the
case of compressible bearing stratum ,which requires
that the force developed at the pile’s tip is equal to
the reaction of the underlaying stratum. Thus

K,B, =EA LA (14-a)
where,

K; the subgrade reaction of the bearing stratum.

Secondly, the case of rigid bearing stratum, which
leads to zero displacement of the pile tip and
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accordingly,

B =0 (14-b)

And finally, the case of "fully" floating pile, which
requires zero force at the pile tip and demands

(14<)

Using (11) and (13) with either (14-a), (14-b) or (14-
c) depending on the tip’s conditions, and solve for
A, and B, or A and B,. Using the values obtained
and relationship (9), all the coefficient A, and B; can
be obtained.

With all the integration constants at hand, we can
find all the required quantities using relationship (5)
and its derivative.

4. NONLINEAR ANALYSIS

To treat the cases of soil’s nonlinearity and
yielding of soil, the following steps has to be
followed: -

1. Divide the soil into n layers with each layer
having its own force-displacement curve, similar
to the one shown in Figure (1) with additional
curve for the bearing stratum, if needed. In case
of soil having constant properties with depth, of
course, all layers would share the same curve.

2. Replace each curve by a broken line as shown in
Figure (1). The slope of any line segment
represents the secant subgrade reaction for the
level of displacement shown on the horizontal
axis below that segment. The lengths Au; may
be taken arbitrary and need not be equal
However in practice, they depend on the degree
of accuracy needed in the analysis.

3. For all layers, 1 through n, find the subgrade
reactions K, ; where the first subscript refers to
the displacement level and the second one refers
to the layer.

4. For an applied load N _=1 find the coefficients A,
through B, using the procedures described
before.

5. Find the displacement at the mid point of each
layer, corresponding to N = 1. From those
values,find the force N that causes the mid point
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displacement in one layer, layer i, to reach Au,.

Note:- "here after, call the load calculated in step
5 above N,; and the displacements, at mid
points, associated with it by Dy; where for D ;
the first subscript refers to the stage of loading
and the second one refers to the layer. For the
load N ; the second subscript refers to the stage
of loadmg and the first one, always o, to remined
us that the load is applied at the pile head."

6. Find the integration constants A; through B, as
in step 4 above. With the exception that, for layer
i, mentioned in step 5, the subgrade reaction
corresponds to the second displacement level.

7. Working, exactly, as in. step S5, but now the
displacement at the mid point of each layer, layer
J» 1s given as the sum of the displacements Dy,
where k varies from 1 to the present loading
stage. The displacements in this stage are
calculated using integration constants found in
step 6.

8. Find the smallest incremental force N, that
causes the displacement at mid point of any layer,
except for layer i mentioned in step 5, to reach
the displacement level Au; OR N, that cause
the displacement level in layer i to reach the
displacement level Au;+Au,.

9. A total applied force N, ;+N, , correspondmg to
displacement D, . + £ Dz 32 where j=1,2,...,n, are
obtained.

10. Steps 3 through 9 are rcpcated with the

rcqmrcd_ modification, to attain the required
level of loading or displacement.

v—"'-"'—_-..-.-._—.-'—

Force
~

Thh . b | ' o

Displacement

Figure 1. General (t-z) or (p-z) curve.
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5. THEORY VERIFICATION

A field test is reported by Mccammon and Golder
(1970), and analyzed by Meyer et al, (1975). This
test was performed on 61 cm. (24 inch) diameter
circular steel pile with wall thickness 12.7 mm. (0.5
inch) with embedded length of 48.15 m (158 feet)
in cohesive material. The pile was closed at the tip.
The field load test was performed after the pile had
remained undisturbed for a period of 170 days.

Table (1) (Meyer et al,1975) shows peak side shear
strength and length of each layer, together with the
peak end bearing strength of the underlaying
stratum.

Figure (2) shows the assumed force-displacement
shape (Meyer et al,1975) for the layers and the
bearing stratum. The bearing stratum force-
displacement curve remains unchanged. For the
layers force-displacement relations, two curves are
used; the first curve A with yield displacement 1.27
mm. (0.5 inch) and curve B with yield displacement
7.62 mm. (0.3 inch).

0.0 2'.6 ) 4..@ - 6.._8 ) .

P '|.0‘!r 7
= 3
@ ! :
5 / G CA)
(=] T b Uy ETET uvre
‘“‘\0'5 : --=-=-Curve (B)
s ¥ Beer tng stretum

I

H

9.9 T - T - T
.2 ©.5 1.0 1.5 2.0 2.5 3.0
Displacement (inches)

Figure 2. Force-displacement relation for side shear
and end bearing.

Figure (3) shows the relationship between the load
applied at the pile head and the head displacement.

" Three cases are tried; firstly using curve A, secondly

using curve B and finally usmg curve B with half
peak yield strength.

From figure (3), it can be shown that a very close
agreement between the results obtained using the

~ present method and both the finite element method

and the field test.
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Table 1. Properties of layers and bearing stratum, after Meyer et al, (1975)

Length Shear Strength
m feet KN/m* psf
Layer I 7.62 25.00 2.885 300.0
Layer II 18.28 60.00 9.619 1000.0
Layer III 22.25 73.00 19.239 2000.0
KN kips
Bearing stratum 505.00 56.5

" Anumber of field pile load tests were conducted

The pile used in this test is a steel pile with outer
~ diameter 410.mm (16-in) and wall thickness 7.9 mm

(312-in) and total length of 16.1 m (52.8 ft). The
site consists essentially of three major strata.

(kips.)

The general Ramberg-Osgood curve is given by

by the United States Army Corps of Engineers, in Gk, -k z

Arkansas Lock and Dam No. 4 on the Arkansas T, = : m+kﬁz‘
River in Arkansas, (Mansur and Hunter, 1970). k,-kz ™

Analysis of the data was carried out by (Desai, 1974). [1 " T’ ]

where,

7g shear resistance along the shaft

ug displacement

kog initial spring stiffness

k¢s final spring stiffness

P load corresponding to the yield point, and

0 : m the order of the curve, taken unity in this paper.
0.0 et sl 1 0 100%_0 At each depth z, the value of kng is found by
A measuring the initial slope of the t-z curve at that
= depth. The final slope at any given depth z, ki is to
D _1.0 A - 2.0 be given by
8 kg = 0.005 kg
:E: 3 256 Py is taken equal 7., the maximum shear
E } I T strength.
5-2 b “ S The nonlinear p-z curve is also simulated using the
4 l' - 6.0 R-O model as
*]
a = z
§oso| ¥ | S ENR
o) | 180 ' YL .
} 4 [1+ (ku_kﬁ)zl ]
-4.0 {00 ‘ Py

0 1000 2000 3000 4000
Total load (kN)

- Figure 3. Head displacement-total load curves.

The force-displacement relation of each layer
together with that of the underlaying stratum are
simulated using a generalized Ramberg-Osgood
model as proposed by Armaleh and Desai (1987).

Desai (1974) stated that " Adequate triaxial test
data were not available for the soil at the LD4 site.
Therefore, the required parameters where adopted
on the basis of similar alluvial sands at other
locations".
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where

P, pile tp resistance, and

koe Kg» Pg» and m are the R-O parameters for the
pile tp.

Armaleh et al (1987) proposed that the expression
introduced by Randolph and Wroth (1978) to predict
the tip load in terms of the tip displacement is to be
modified such that the resuling tp load be
increased by a factor of 2.7 . This is done, for their
model to simulate the tp behavior. Table (2) shows
the properties of each layer together with the
properties of the bearing stratum as proposed by
Armaleh and Desai (1987).
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Table 2. Parameters for t-z and p-z curves used in analysis, aftcr Armaleh and Desai (1987).

Layer Length | S kg : Pgs
feer m t/in kN/cm t/in kN/cm t kN
Layer I | 24.0 7.315 2.63 9.2 013 045 031 0.27
Layer II - 23.0 7.010 5.81 20.3 ~.029 1 0.17 1.5
Layer II | 8.0 2.438 11.16 39.1 .056 2 032 2.85
' I Ko ks Pfe
t/in. kN/cm t/in. kN/ecm t kN
Bearing stratum 7640 | 26763 382 134 70.0 623.0

In the present method it is found that accepting
the expression introduced by Randolph and Wroth
(1978) simulates the actual behavior of the pile’s
head and tip better than that introduced by Armaleh
and Desai (1987). In the two cases considered it is
found that; the proposed model simulates the actual
response of the pile,nearly, up to top settlement
equal 20 mm.(0.75 inch).

(tons)
il L AO0 200 300
o.od- " L L " i " L " " A L A e;—e
E-10 1 -
L S --0.5
+-20 1
g .1 1.6 i
1.0 =
8-3.0 1 F 2
o C
3 £
©_40 ] --1 5
- ;
@ !
I_50 ] L_2.0
~6.0 - i S _
0 1000 2000 30002.5

Total load (KN)

Figure 4. Head displacement-total load curvés.

In Figures (4) through (8-b), the curves obtained
using the present method and the R-O parameters
-proposed by Armaleh and Desai (1987) are refer to
by P.M (1), while the curves obtained using the
present method and the R-O parameters calculating

c2%

using the approach of Randolph and Wroth (1978)
are referred to by P.M(2).

Figure (4) shows the relationship bel:wcen head
displacement and the load applied at the pile head.
From figure (4) it can be seen that the present
method is conservative, and produces results very
close to the finite element solution and the field
test. Using R-O parameters as proposed by Randolph
and Wroth (1978), predicts the head behavior better
than those introduced by Armaleh and Desai (1987).

(tons)

]
9.0 4= 0.0
_~1.0] p
£ ] [
S g
2.9 :
é ] F =10 e
8- 3-0': 290000 Measured \ 2
8 ) : F-E (Desol) N\l e
% - e — :M 2 i \ -_1'5 ;:
g§-4.01 — — M \b
Qa
F.s. 9* - -2.0
-6.0 r
0 1000 2000

00-25
Total load (kN) "

Figure 5. Tip disp]accmcnt-tdtal load curves.

The deviation between the two curves appears at
displacements higher than 10 mm. (0.4 inch). This is
expected, since changing the bearing resistance of
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¢ bearing stratum affects the force- dlsplaccment
tltion at higher displacements only.

Figure (5) shows the relationship between tip
splacement and the load applied at the pile head.
gain, from figure (5) it can be seen that, using R-O
unmeters as proposed by Randolph and Wroth
1978), predicts the tip behavior better than those
_"..., by Armaleh and Desai (1987).

‘Figures (6) and (7) show the relationship between
haft load and total load and the relation between tip
ud and total load, respectively. The difference
between the results obtained using R-O parameters
s proposed by Randolph and Wroth (1978), and
those obtained using R-O parameters as proposed by
Amaleh and Desai (1987) is negligible. Both of
them simulate the finite element solution very well.

(tons)
0 100 200 300
2500 i A 2 1 & " A L 2 " 2 L A i
- 250
2000 -
? ."' B 200
<1500 - o
i T ‘ 150 @
3 S
= 1000 - ~
[} - 100
=
0
5’0’0 1 50
Ot A 10
0 1000 - 2000 3000

Total load (kN)

Figure 6. Shaft load-total load curves.

Figures (8-a) and (8-b) show the variation of the
axial load along the pile, for two values of the
applied load 1072.5 kN (120 ton) and 1787.5 (200
ton), respectively. From the figures, it is clear that
the present method predicts the distribution in the
axial load within the pile better than the finite
element method. Beside, the distribution of the axial
load is insensitive to the variation in R-O parameters
representing the bearing stratum.
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Figure 7. Tip load - total load curves.

0 100 200 (tons)
0 a2 2 3 2 [ e A L i O
=i
- 10
-4
£ g L 20
2
a _g84 ~
g‘ - 30 3'3
o —10" -
Q
g -12- - 40
@
o —-144 gcéo?%red )
........ . esai
; seeese PM (1 - S0
-164" 00999 PM (2
-18 N v
0 1000 2000

Load in pile (kN)

Figure 8. Distribution of load along pile, P =120 t¢.
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Figure 9. Distribution of load along pile, P=200t.

The load carrying capacity of the pile is measured
from the field test (Desai, 1974) and evaluated using
the finite element method (Armaleh and Desai,
1987). It is calculated using the present method
twice; once using the R-O parameters as introduced
by (Armaleh and Desai (1987) and once using the R-
O parameters as proposed by Randolph and Wroth
(1978). In all cases, the tangent method are used. In
this method, the intersection of tangents to the
initial and final portions of the pile head
displacement-total load curve gives the value of the
bearing capacity.

Table (3) gives the results of the comparison. From
table (3), it can be seen that the proposed method
succeeds in predicting the carrying capacity of the
pile, especially if the parameters of the R-O curve
are calculated following (Randolph and Wroth, 1978).

The deviation between the proposed model and
the field measurements for higher settlement, may
be attributed partially to the lake of accuracy in
calculating the final spring constant and the yield
load, since they control the behavior of the p-z curve
at higher displacement. Another reason that may
contribute to the deviation is that the initial stresses
are not introduced to the proposed model.

Table 3. Load carrying capacity.

Method of Analysis kN ton
measured (Desia, 1974) 2002.00 225.00
F.E (Armaleh and Desia, 1987) 1940.00 218.00
Present method (1) 2200.00 247.00
Present method (2) 2100.00 235.90

7. CONCLUSION

A theory is introduced to predict the behavior of |

axially loaded' pile and the surrounding soil. The
theory takes into account the effect of variation of
pile and soil properties with depth. It is valid for
both linear and nonlinear analysis, using the same
procedures. All possible conditions at the pile’s tip is
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incorporated in the analysis.

The method is analytical and requires minimal
computing time and memory space. Comparison
with field tests and the finite element solution
shows very close agreement. In case of linear
analysis the solution is straight forward, while in case
of non-linear analysis the solution is incremental, not
iterative, which means higher accuracy and less
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ting time. The introduced method uses the
t modulus of the subgrade reaction, but the
nt subgrade reaction can be used with the same

ndix Notation

and B, constants of integration

transfer matrix

global transfer matrix

the axial nigidity of the pile

subgrade reaction along pile, "force per
unit length of the pile needed to produce
unit displacement"

subgrade reaction of the bearing stratum,
"force needed to produce unit
displacement at the pile tip"

initial spring stiffness along pile

final spring stiffness along pile

initial spring stiffness of the bearing
stratum

final spring stiffness of the bearing
stratum

axial force in the pile

axial force at the pile’s head

the order of the R-O curve

load corresponding to the yield point
along pile

load corresponding to the yield point of
the pile tip

pile tip resistance

axial displacement of the pile,

distance along the pile

shear resistance along the shaft
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