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ABSTRACT

The stability of the solutions near the equilibrium points of the non linear undamped oscillation of
the form % + f(x) = 0 where f(x) is an asymmetric non linear function of x is analysed. The main
characteristic of the oscillation namely, the frequency p, the shift of the center A from the origin and
the average amplitude a are also obtained. Our results agreed with those of [1] where a series solution

of an asymmetric oscillation of the form % + 3x% - 6x + 2 = 0 was obtained. We also analysed the
stability conditions of the solutions near the equilibrium points of two other asymmetric oscillations

namely when f(x) = o %% - Bz x* and f(x) = o® x

were obtained in series form also in [2].

+ Bx3 where «, § are constants, whose solutions
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INTRODUCTION

A non linear undamped oscillation given by the
‘equation
¥ +f(x) =0 (1)

1s asymmetric if the characterstic function f(x) is
asymmetric i.e if

f(x) #- f(-x) @
and it is symmetric if
f(x) = - f(-x) 3)

Non linear symmetric oscillations are studied in
many well known equations such as van Der Pole
equation [3], the Rayleigh equation [3], Duffing’s
equation [4] and Lashink’s equation [5]. In all these
equations, the attenuation and the restoring force are
symmetric. Non linear asymmetric oscillations are
much difficult than symmetric ones. This is because
there is a direct relation between the characteristic
function f(x) of the undamped oscillation and its
periodic time T, the linear charactenistic that
approximates f(x) passes through the origin and there
is equal excursion on both sides of the center of the
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symmetric oscillation [6]. In section 2 we analyse the
stability of an asymmetric non linear undamped
oscillation whose characteristic function is of a
general form f(x). We used the linearlied theory of
stability since the results of Lyapunov analysis and
linearlized stability analysis are proved to be the
same [7]. In section 3 we calculated the average
amplitude a, the shift of the center of the oscillation
A from the origin and the frequency p of the
oscillations. In section 4 we present the results of
both the analysis of stability and calculation of a, A
and p when the characteristic function f(x) is of the

form
f(x) = ax* + bx + ¢ 4)

where a, b, ¢ are constant. We got numerical results
when a,b, and ¢ have the values of 3, -6, and 2
respectively. These results agreed with those of Eid
[1] where a series solution of an asymmetric non

linear oscillation of the form¥X + 3x2-6x+2=0
was obtained. In sections 5, and 6, the stability of
two other non linear asymmetric oscillations given by

+o’x%-8%* =0 and £ +a*x%-Px3 =0 43¢
analysed. Conclusion is presented in section 7.
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2. STABILITY

To use the linearlized analysis of equilibnia [3], [4]
we begin by defining x,, x, such that

Xl = X
and (5)

The 2nd order d.e. given by (1) is now transformed
into two 1st order d.e. in the from

: X; = Q(xy,x2)
and (6)
o 5(2 - P(pr.z)
where
Qxy, xp) = X;, P(xy, xp) = -f(xy) 7)

Let the equilibrium points be defined as the points
at which x = 0 and % = 0. This means that the
values of equilibrium points x_ satisfies the equation

f(xp) = 0 (8)

‘Now we can take the origin of coordinates to be at
any one of the equilibrium points by merely a
translation of coordinate axes. By expanding Q(x;,x;)
and P(xy, X,) in a Taylor series around the origin, we
get from equations (6)

i COXp = agXg +oapX; + € (X1,Xp)
and ; )
' Xy = aX) + apX; + € (X,%p)

where the coefficients a; are evaluated at the origin
and have the values

d d aP aP
an =—é—g: ap = ag a = axl= a2 =-3-£2- (10)

while ¢, ”(xl » Xz ) and €, (x; , X, ) are non linear
functions of x, , x, which can be neglecned near the
origin.

So, equations (9) can be written in matrix form as

{x} = [a] {x} |an

where
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Gl s [311 a12:|
a1 a2
off o]
x, X,

let the solution of (11) be of the form

(x} = eM{c} )

where A is a constant and {c} is a constant column

matrix given by
{c})= [c‘} (14)
¢ :

To get a nontrivial solution of equation (11), the
characteristic equation given by

det([a] - A[I]) =0 (15)

where [I] is the unit matrix must be satisfied.
Substituting from equations (10) and (5) in (15) the
characteristic equation can be written as

9PQ _
ox 0x

aP 3Q
x 9%

2 _ (9P , 90y, . =0 (16)
%

For each equilibrium point of the system, A has
two values. The behavior of the solution given by
(13) in the neighborhood the equilibrium point
depends on the two values of \. When both roots of
(16) are conjugate complex then the solution x(t) is
osci]latory and if they are purely imaginary then the
solution is stable perodic [3]. Thls is thc kmd of
solution we are searching for.

3. AVERAGE AMPLITUDE, CENTER AND
FREQUENCY OF OSCILLATION

Let initial condition be given such that at t = 0,
x(0) =a;, %x(0) =0 ' RSN

Due to unsymmetry of the function flx), let x = - ay
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be the other point of maximum deflection of the
oscillation at which x = 0. The relation between a;
and a, is given by '

8

[ f@dx =0 (18)

|

This can be obtained from equation (1) by
substituting % by x%(. and integrating from x = - a,
X

0 X = a;.

Due to unsymmetry of the function f(x), let the
central position about which the system is vibrating
by shifted to the left of the origin by the distance A
such that

a - 4
A= (19)
2

let a be the half of the total excursion, i.e.,

= 4 + 3
- (20)
? 3

Thus for any initial condition given by equation (17)
there are certain distinct values of the deflection a,,
the shift of the center A and average amplitudea
that can be obtained from equations (18), (19) and
(20) respectively. Let an approximating linear
characteristic drawn from the center of oscillation be
given by

f*(x) = pix +4) @1

where p is a frequency to be obtained.

Figure (1) shows the assumed location of a;, and
that of a, and A as given by equations (17), (18), (19)
the hatched area in this figure shows the sum of the
dlffcrcnces between some asymmetric function f(x)
and £ (x) during a half of the oscillation. (i.e. from x

= -3, to X = a,). To relate these differences to the
coordinate x we dcﬁne the weighed deviation r
between f(x) and f (x) by:

r=(f(x) - (%) (x + 4) (22)

Then the sum I along a half oscillation of the square
of the weighed deviation r is given by
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8
- f r2dx (23)

We choose p such that the integral I has a minimum

value. This is obtained from the relatmnd_l2 =0
dp
from which p? has the value
4
pr=—> [ fx)(x + )% 24)
(a,+a)’ 2,
£ox) 4
f'{x) 5\
"
£'(x)
gl S

._4||'__.._ a; .__...T

Figure 1. The assumed locations of a;, a, and A.
The hatched area shows the sum of the differences
between f(x) and f.(x) during a half oscillation.

4. RESULTS

4.1. Ist Kind of Asymmetric Non Linear Undamped
Oscillation

4.1.1. Stability

We begin by an undamped non linear asymmetric
oscillatiori"fqr which f(x) has the value ;

f(x) = ax? + bx + ¢ Rl -
where a, b and ¢ are any constants. The two

equilibrium points x, , as obtained from equation
(8), and (25) are given by '
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. —b_.t Vb: - dac (26)

Tz = 2a

Thus if 2 - 4ac >0, then for the first
equilibrium point x, , after substituting from
equations (5),(7) and (25) the characteristic equation
(16) takes the form:

AT - 7 27)

ie, AN aw?i? (28)

where i = /=1 and w is a real quantity
ie.,
AMo2=xwi (29)

Hence as was shown in section 2, the solution x(t)

near equilibrium point x, is stable and periodic.
Repeating for the other equilibrium point x,, the

characteristic equation (16) takes the form:

A% = {b? - 4dac (30)

i.e., kl‘z =+ W (31)

Thus since the roots A, , are real of different sign,
the solution x(t) near equilibrium point x, is non

oscillatory and unstable [3]. Again if Vb2 - 4ac = 0,
we have only one equilibrium point for which the
characteristic equation (16) is given by

Mz2=0 (32)

and hence no oscillattory solution is expected near
equilibrium point for this case [3].

Thus 1}52 - 4ac > 0 is necessary and sufficient for
the oscillation for which f(x) is given by equation
(25) to have a stable periodic solution near
equilibrium point x; given by equation (26).

These results are in agreement with the results of
Eid [1] where the solution x(t) of the oscillation

X+3x%-6x+2=0 (33)
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was studied. It obvious that ‘/Ez - 4ac is > 0 and
the obtained solution is stable around the

equilibrium point x; =1 + % and is unstable
3

around the equilibrium point x, = 1 - —-1—

V3

4.1.2. Average Amplitude, Center and Frequency
of Oscillation

To get a, the other point at which x = 0 , we
substitute from equation (25) in equation (18) we get
an algebraic equation of the third degree in a, that
is

3 3b 2 3
a, - .__.Zaaz + _.._..acaz +D=0 (34)
where
3 3h2:.3¢
D = D(a;) = a; + ?a.al + Tal (35)

Equation (34) has at least one real root and at most
three different real roots [8]. Hence the number and
value of a, depends on initial value of a; and the
coefficients a,b,c of the function f(x).

If b = 0 and ¢ and a are of the same sign then only
one of the three roots of equation (34) is real [8] and
is given by

1,3 . 3¢ 6 6¢.4 _ 922
a; = { "E[al v + @y + = +?a1

3
» SeTyips ¢ _l[ai'* + .3’_":1 - (a; (36)
a3 2 B
2 3
+§al4 A 9¢ alz * 4c )1/3]}”3
a az 33

Also it is obvious that one of the three roots of
equation (34) is equal to - a;. The two other values
of a, are real and different if L defined by

_(3b 3b N 12ca; (37)
L = (ﬂ + a;)(z 3ay) =

Is + ve.
However, they are real and equal if

L=0 (38)
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and they are complex conjugate if

L, < 0 (39
Hence we may note that there is two centers, one
center and no center of oscillation when conditions
(37), (38) and (39) are satisfied respectively.

Thus once a, is found, the shift of the centers of
oscillation A, the average amplitude a, and the
approximated frequency p are calculated from
equations (19), (20) and (24) respectively.

Table (1) shows values of a, for different values of
a; and the corresponding values of A, a, and p? for
the asymmetric oscillation given by equation (33).

It was found that L is < 0 when the initial value of
a; is greater than or approximately equal to
equilibrium point so there is no real values of a, and
consequently no values of A, 2 and p? can be found.

This is shown in the base of table (1). However L
is > 0 for all other values of a; and hence two
values for a, are found. In the table if only one value
of a, is recorded this means that the frequency p?
which correspond to the unrecorded values of ayis -
ve and hence this value of a, is rejected. The
frequency p? = 3 that corresponds to a; = 1 is
identical with the frequency of the solution of [1].
Figure (2) shows the extreme excursion a,, the shift

of the center of the oscillation A, the amplitudea
for this case.

It is obvious that x(t) has only +ve values. This
agrees with the results in [1] where only +ve values
of x(t) are found in the solution. Also, Figure (3)
shows the function f(x) = 3x% - 6x + 2 and the
approximated linear characteristic function f (x)
=3(x+1.5) when a; = 1.

The stable equilibrium boirmll1 =1+ %-1.5772
3

and the unstable equilibrium pointx,=1- % ~0.4228
3

are also shown, in this figure. The sum of the
differences between f(x) and f (x) during a half
period (from x = a; = 1 to x = a, = 2) is a minimum
because the value of p? = 3 is calculated from
equation (24).
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Table 1. Values of a, for different values of a; and
the corresponding values of A, a and p? for the

oscillation given by % +3x%-6x +2 =0 studied in [1).

e ™ A -; n‘
0.1 -2.9307 -1.51535 1.41505 3.09210
0.2 -2.856 -1.528 1.328 3.168
0.3 -2.77566 -1.53779 1.2378 3.228
0.4 -2.6892 ~1.5446 1.1446 3.2676
0.5 -2.5963 -1.5481 1.04815 3.2786
0.6 -2.49615 -1.5483 0.9481 3.2886 |
0.7 -2.3879 -1.5439 0.8439 3.2634
0.8 -2.2705 -1.5352 0.73523 3.2112
0.9 -2.1420 -1.521 0.621 3:138 -
1 -2 ~1.8 0.5 3
1.1 -1.8402 -1.47 0.3701 2.82
1.2 ~1.6549 -1.4275 0.2275 2.5649
1.3 -1.4266 -1.3633 0.0633 2.1798
1.4 -1.0828 -1.2414 0.1586 1.4484
1.41 -1.0275 -1.2186 0.1914 1.3116
e 062358 02178 o, 39023 0.130¢8
1.43 -0.8214 -1.1257 0.3043 0.7542

-0.7486 -1.0893 0.3407 0.5358
1.44 — ——- — —
1.45
1.5

—1t

o e g e
b— a,
fe A —F
—a —

Figure 2. a,, A, a for the nonlinear oscillation

studied in [1] when a; = 1.

él‘l- k] 2
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Figure 3. f(x), f (x), Xy, X for the ‘nonlinear
oscillation studied in [1] when a; = 1.
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5. 2nd KIND OF ASYMMETRIC
NON LINEAR UNDAMPED OSCILLATION

- Thandapani et al [2] found an approximate solution
of the oscillation

% + of x% = g&* (40)

where « and § are constants.

To study the stability of this oscillation, we repeat
the same procedure of section 2. It is easily proved
that there are three equilibrium points x; , 3 which
are 0, ig.

Substituting from equations (31), (3), (4), (7) in (6),
we find that there is no stable solution near
equilibrium point x; = 0 since X, , = 0.

Repeating again for the equilibrium point x, = %,

we find that the roots )\1’2 are

)‘12 - :(P_gi)lfz (41)

. hence near x;, there is a stable periodic solution x(t)
if o and f are of different sign since this makes X, ,
complex conjugate purely imaginary. Once again for
the third equilibrium point x3 = -.g., the roots ?\]‘2

arc .

3
Mz = H(Zg) (42)

So near x; there is stable periodic solution x(t) if
and @ are of the same sign. From equations (41) and
(42), the condition of stability of the solution near x,
is opposite to that near x;. So there is only one
stable periodic solution when «, § are either of the
same sign or are of different sign.

6. THIRD KIND OF ASYMMETRIC
NON LINEAR UNDAMPED OSCILLATION

The other kind of oscillation that Thandapani et al
[2] found its approximate solution is

% + o?x? = -Bx3 (43)
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; Si
The equilibrium point x ; are 0, _éi.
Repeating the same procedure as in section 5, we
find that near equilibrium point x; = 0 there is no
stable solution since A; ,=0.

il
However near equilibrium pointx, =_.§_ s A2

have the values

Mz = _t(%“‘)”z (44)

hence there is stable periodic solution near x, if §>0.
Hence the oscillation presented in equation (43) has
only one equilibrium point and the condition of
stability of the solution is quite simple.

We postpone the calculations of a,, A and p2 for
the two oscillations given by equations (31) and (34)
that were studied by Thandapani et al [2] to future
work. This is because the approximated solution
presented there is not calculated numerically. Hence
more laborious lengthy work is needed to compare
the results of our work with those of [2].

7. CONCLUSION

Solutions of equations of non linear oscillations are
difficult. Whether or not these difficulties are
overcome, the study of the stability of the solution
near equilibfium points is a must. Mean while, in
many practical applications, it will suffice to
determine the frequency of the oscillation, its
average amplitude and the shift of the center of the

“oscillaton from the origin without going into the

details of the process of oscillation. Since our results
concerning both the stability and characteristics
analysis agreed with those of [1], we believe that the
method used in this work has proved its consistency.

REFERENCES

[1] M.H. Eid and F.Z. Habieb, "On the solution of
some asymmetric oscillations", Alex. Eng. J.,
Vol. 29, No. 2, April 1990.

[2] E. Thandapani, K. Balachandran and G.
Balasubramanian, "Series Solution of some non
linear differential equations", J. of comp. and
Applied Math., vol. 23, pp. 103-107, North
Holland, 1988.

Alexandria Engineering Journal, Vol. 33, No. 4, October 1994




EL-KHOGA: Stability and Characteristics Analysis of Non Linear Undamped Asymmetric Oscillation

[3] L. Meirovich, Elements of vibration analysis,
McGraw Hill Book Company, 1986.

[4] N.N. Minorsky, Non Linear Oscillations, Van
Nostrand, Princeton N.]J., 1962.

[5] F. Cap and H. Lashinky, "On an equation
related to non linear saturation of convection
phenomena", Proc. sixth Intern. Conf. Non linear
oscillations, Posnan, Poland, August 1972.

[6] Ya. Panavko, Elements of the applied theory of
elastic vibrations, Mir publisher Moscow, 1971.

[7]1 F.F. Cap, Hand book on plasma instabilities,
Academic Press, 1976.

[8] C.C. McDuffee, Theory of equations, John Wiley
& Sons, 1954.

Alexandria Engineering Journal, Vol. 33, No. 4, October 1994 D219



