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ABSTRACT

The stability of the solutions near the equilibrium points of the non linear undamped oscillation of
the form j( + f(x) = 0 where f(x) is an asymmetric non linear function of x is analysed. The main
characteristic of the oscillation namely, the frequency p, the shift of the center A feom the origin and
the average amplitude a are also obtained. Our results agreed with those of [1] where a series solution

of an asymmetric oscillation of the form x + 3x2 - 6x + 2 = 0 was obtained. We also analysed the

stability conditions of the solutions near the e~uilibrium points of two other asymmetric oscillations
namely when f(x) = a2 x2 - (32x4 and f(x) = a x2 + {3x3where a, (3are constants, whose solutions
were obtained in series form also in [2].
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INTRODUCTION

A non linear undamped oscillation gIven by the
'equation .

is asymmetric if the characteristic function f(x) is
asymmetric i.e if

,Non linear symmetric oscillations are studied in
many well known equations such as van Der Pole
equation [3], the Rayleigh equation [3], Duffing's
equation [4] and Lashink's equation [5]. In all these
equations, the attenuation and the restoring force are
symmetric. Non linear asymmetric oscillations are
much difficult than symmetric ones. This is because
there is a direct relation between the characteristic
function f(x) of the undamped oscillation and its
periodic time T, the linear characteristic that
approximates f(x) passes through the origin and there
is equal excursion on both sides of the center of the

(4)f(x) •• ax2 + bx + c

symmetric oscillation [6]. In section 2 we analyse the
stability of an asymmetric non linear undamped
oscillation whose characteristic function is of a

general form f(x). We used the linearlied theory of
stability since the results of Lyapunov analysis and
linearlized stability analysis are proved to be the
same [7]. In section 3 we calculated the average

amplitude a, the shift of the center of the oscillation
~ from the origin and the frequency p of the
oscillations. In section 4 we present the results of
both the analysis of stability and calculation of a, ~
and p when the characteristic function f(x) is of the
form

where a, b, c are constant. We got numerical results
when a,b, and c have the values of 3, -6, and 2
respectively. These results agreed with those of Eid
[1] where a series solution of an asymmetric non
linear oscillation of the form x + 3x 2 - 6x + 2 = 0
was obtained. In sections 5, and 6, the stability of
two other non linear asymmetric oscillations given by

x + aZx2 - {32x4 = 0 and x + a2x2 - {Jx3 = 0 are

analysed. Conclusion is presented in section 7.

(1)

(3)

(2)

x + f(x) = 0

f(x) = - f(-x)

f(x) ;t - f(-x)

Ian9 it is symmetric if
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2. STABILITY

To use the linearlized analysis of equilibria [3], [4]

we begin by defining xl' Xz such that

(12)

[all
[a] =

aZI

w • {~} , x' {~l(5)and

Xz EO X
let the solution of (11) be of the form

The 2nd order d.e. given by (1) is now transformed
into two 1st order d.e. in the from (13)

and (6)

where >. is a constant and {cl is a constant column

matrix given by

where·

(7)
(14)

Let the equilibrium points be defined as the points
at which x = 0 and x = o. This means that the

values of equilibrium points Xo satisfies the equation

To get a nontrivial solution of equation (11), the
characteristic equation given by

(8)
det([a] - >'[1]) = 0 (15)

'Now we can take the origin of coordinates to be at
anyone of the equilibrium points by merely a
translation of coordinate axes. By expanding Q(xI'xZ)
and P(xI' xZ) in a Taylor series around the origin, we
get from equations (6)

where [1] is the unit matrix must be satisfied.
Substituting from equations (10) and (5) in (15) the

characteristic equation can be written as

>.z _ (op + oQ) >. + oP oQ _ op. oQ ~ 0 (16)
ox ox ox ox ox ox

where the coefficients aij are evaluated at the origin
and have the values

oQ oQ oP oP
all =_. -, alZ = -, aZI = -, azz = - (10)
,,oxI oxz oXI oxz

while fl (xl ' Xz ) and fZ (xl ' Xz ) are non linear
functions of xl ' Xz which can be neglected near the
ongm.

So, equations (9) can be written in matrix form as
x(O) - al ' x(O) = 0 ' (17)

Let initial condition be given such that at t - 0,

3. AVERAGE AMPLITUDE, CENTER AND
FREQUENCY OF OSCILLATION

For each equilibrium point of the system, >. has
two values. The behavior of the solution given by
(13) in the neighborhood the equilibrium point
depends on the two values of A. When both roots of
(16) are conjugate complex then the solution x(t) is
oscillatory and if they are purely imaginary then the
solution is stable periodic [3]. This is the kini:l of
solution we are searching for. ' .'

(9)and

where
{x} = [a] {x} (11)

Due to unsymmetry of the function 'f(x), let x - - az
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be the other point of maximum deflection of the

oscillation at which x = o. The relation between al
and az is given by .

(23)

(18)

This can be obtained from equation (1) by

substituting x by x dx and integrating from x = - azdx
tox-at·

Due to unsymmetry of the function f(x), let the
central position about which the system is vibrating
by shifted to the left of the origin by the distance .1.

such that

We choose p such that the integral I has a minimum

value. This is obtained from the relation dI Z = 0
dp

from which pZ has the value

&1

p2 = 5 f f(x)(x + ~)3dx (24)
(al +~)s -az

Thus for any initial condition given by equation (17)

there are certai~ distinct values of the deflection az,

the shift of the center .1. and average amplitude i
that can be obtained from equations (18), (19) and
(20) respectively. Let an approximating linear
characteristic drawn from the center of oscillation be

given by

___ 42

Figure 1. The assumed locations of al~ azand d.' ,
The hatched area shows the sum 'of the differences

between f(x) and f.(x) during a half oscillation.

(19)

(20)al + aza=--_
2

let i be the half of the total excursion, i.e.,

(21) 4. RESULTS

4.1.1. Stability

4.1. 1st Kind of Asymmetric Non Linear Undamped
Oscillation

We begirt by an undamped non linear asymmetric
oscillation -for which f(x) has the value

where p is a frequency to be obtained.

Figure (1) shows the assumed location of aI' and
that of az and .1. as given by equations (17), (18), (19)
the hatched area in this figure shows the sum of the
diffyrences between some asymmetric function f(x)
and t(~) during a half of the oscillation. (i.e. from x
- -az to x - al)' To relate these differences to the
coordinate x we define the weighed deviation r•
between f(x) ap.d f (x) by: f(x) - axZ:+ bx + c (25)

Then the sum I along a half oscillation of the square
of the weighed deviation r is given by

•
r - (f(x) - f (x» (x + d) (22)

where a, band c are 'any constants. The two

equilibrium points xI,Z as obtained from equation
(8), and (25) are given by
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(26)

Thus if Jb 2 - 4ac > 0, then for the first
equilibrium point xl ' after substituting from
equations (5),(7) and (25) the characteristic equation
(16) takes the form:

was studied. It obvious that Jb2 - 4ac is > 0 and
the obtained solution is stable around the

'l'b ' . lId ' hIeqUl I num pomt Xl = + - an IS unsta e
13

around the equilibrium point ~ = 1 - .l.-.
13

(27)
4.1,2. Average Amplitude, Center and Frequency

of Oscillation

I.e.,

where i = Rand w is a real quantity
I.e.,

"1.Z - ± wi

(28)

(29)

To get az the other point at which x = 0 , we
substitute from equation (25) in equation (18) we get
an algebraic equation of the third degree in az that
IS

3 3b z 3c
aZ - -aZ + -aZ + D = 0 (34)2a a

Hence as was shown in section 2, the solution x(t)

near equilibrium point xl is stable and periodic.
Repeating for the other equilibrium point xz' the

characteristic equation (16) takes the form:

Thus since the roots "l,Z are real of different sign,
the solution x(t) near equilibrium point Xz is non

oscillatory and unstable [3]. Agai~ if Jb2 - 4ac = 0,
we have only one equilibrium point for which the
characteristic equation (16) is given by

(35)
3b z 3c

+ -al + _al2a a

where

3b 3b I2ca1
L = (_ + a1)(- - 3al) - __ (37)2a 2a a

Equation (34) has at least one real root and at most
three different real roots [8]. Hence the number and

value of az depends on initial value of al and the
coefficients a,b,c of the function f(x).

If b - 0 and c and a are of the same sign then only
one of the three roots of equation (34) is real [8] and
is given by

Also it is obvious that one of the three roots of

equation (34) is equal to - al' The two other values
of az are real and different if L defined by

IS + ve.

However, they are real and equal if

(30)

(31)

(32)

(33)

i.e., "l,Z = ± w

x + 3xZ - 6 X + 2 = 0

and hence no oscillattory solution is expected near
equilibrium point for this case [3].

Thus .jb2 - 4ac > 0 is necessary and sufficient for
the oscillation for which f(x) is given by equation
(25) to have a stable periodic solution near
equilibrium point xl given by equation (26).

These results are in agreement with the results of
Eid [1] where the solution x(t) of the oscillation

L-O (38)
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and they are complex conjugate if

L < 0 (39)

Table 1. Values of az for different values of al and
the corresponding values of ..1., a and pZ for the

oscillation given by -;c +3xz -6x +2 = 0 studied in [1].

Hence we may note that there is two centers, one
center and no center of oscillation when conditions

(37), (38) and (39) are satisfied respectively.
Thus once az is found, the shift of the centers of

oscillation ..1., the average amplitude a, and the
approximated frequency p are calculated from
equations (19), (20) and (24) respectively.
Table (1) shows values of az for different values of
al and the corresponding values of ..1., a, and pZ for
the asymmetric oscillation given by equation (33).

It was found that L is < 0 when the initial value of

al is greater than or approximately equal to

equilibrium point so there is no real values of az and
consequently no values of ..1., a and pZ can be found.

This is shown in the base of table (1). However L

is > 0 for all other values of a1 and hence two
values for az are found. In the table if only one value
of az is recorded this means that the frequency pZ

which correspond to the unrecorded values of az is ­
ve and hence this value of az is rejected. The
frequency pZ - 3 that corresponds to al "" 1 is
identical with the frequency of the solution of [1].

Figure (2) shows the extreme excursion az, the shift

of the center of the oscillation ..1., the amplitude a
for this case.

It is obvious that x(t) has only +ve values. This
agrees with the results in [1] where only +ve values
of x(t) are found in the solution. Also, Figure (3)
shows the function f(x) •• 3xz - 6x + 2 and the

approximated linear characteristic function r-(x)
-3(x+1.5) when al "" 1.

The stable equilibrium point Xl = 1 + ..!. -1.5772
13

and the unstable equilibrium point Xz = 1 - ~ - 0.4228
f3

are also shown, in this figure. The sum of the

differences between f(x) and t(x) during a half
period (from x "" al "" 1 to x = a2 = 2) is a minimum
because the value of pZ "" 3 is calculated from
equation (24).

••
••6';,,'

0.1

-2.9307-1.515351.415053.09210

0.2

-2.8561.5281. 3283.168

0.3

-2.77566-1.537791. 23783.228

0.4

-2.6892-1.54461.14463.2676

0.5

-2.5963-1.54811.048153.2786

0.6

-2.496151.54830.94813.2886

0.7

-2.38791.54390.84393.2634

0.8

2.2705-1. 53520.735233.2112

0.9

-2.1420-1.5210.6213.126

1

2-1.50.53

1.1

-1.8402-1.470.37012.82

1.2

-1. 6549-1. 42750.22752.5649

1.3

-1. 4266-1. 36330.06332.1798

1.4

-1. 0828-1.24140.15861.4484

1.41
-1. 0275-1.21860.19141.3)16

1.42

-0.9564-1.18820.23181.1292
-0.62356

-1.021780.398220.13068

1.43

-0.8214-1.12570.30430.7542
-0.7486

1.08930.34070.5358

1.44

----------
1.45 1.5

~1._
. ~ .•/. .', .J, ~ /I.; .It ;

I-- 8.. ---'--~-­
~a-«I

Figure 2. az, ..1., a for the nonlinear oscillation
studied in [1] when al - 1.

. ! ••
3 x

- I

Figure 3. f(x), f' x), Xl' Xz for the 'nonlinear
oscillation studied in [1] when al - 1.
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5. 2nd KIND OF ASYMMETRIC
NON LINEAR UNDAMPED OSCILLATION

Thandapani et al [2] found an approximate solution
of the oscillation

. l
The equilibrium point xl,l are 0, -; .

Repeating the same procedure as in section 5, we

find that near equilibrium point Xl - 0 there is no
stable solution since Al,l-O ..

where Q' and {3 are constants.

To study the stability of this oscillation, we repeat
the same procedure of section 2. It is easily proved

that there are three equilibrium points Xt,2,3 which

are 0 , ±~.
(3

Substituting from equations (31), (3), (4), (7) in (6),
we find that there is no stable solution near

equilibrium point Xl = 0 since Al,2 = O.

Repeating again for the equilibrium point x2 ~ '
we find that the roots At,2 are

hence there is stable periodic solution near Xl if {3>O.

Hence the oscillation presented in equation (43) has
only one equilibri\]m point and the condition of
stability of the solution is quite simple.

We postpone the calculations of al' ~ and pl for
the two oscillations given by equations (31) and (34)
that were studied by Thandap~ni et al [2] to future
work. This is because the approximated solution
presented there is not calculated numerically. Hence
more laborious lengthy work is needed to compare
the results of our work with those of [2].

(44)

However near equilibrium pointxl

have the values

(40)

(41)

hence near Xl there is a stable periodic solution x(t)

if a and (3 are of different sign since this makes Al,l
complex conjugate purely imaginary. Once again for

the third equilibrium point x3 = - ~ ' the roots Al,l
are.

(42)

So near x3 there is stable periodic solution x(t) if a
and {3are of the same sign. From equations (41) and

(42), the condition of stability of the solution near Xl

is opposite to that near x3' So there is only one
'stable periodic solution when a, {3are either of the
same sign or are of different sign.

7. CONCLUSION

Solutions of equations of non linear oscillati6'ns are
difficult. Whether or not these difficulties are

overcome, the study of the stability of the solution
near equilibrium points is a must. Mean while, in
many practical applications, it will suffice to
determine the frequency of the oscillation, its
average 'amplitude and the shift of the center of the

'oscillation from the origin· without going into the
details' of the process of oscillation. Since our results
concerning both the stability and characteristics
analysis agreed with those of [1], we believe that the
method used in this work has proved its consistency.
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