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ABSTRACT

A Self-Tuning Generalized Predictive Controller (STGPC) was used to control type-I diabetic
subjects. A nonlinear model has been employed, in which renal excretion was taken into account if
the blood glucose concentration exceeds the renal threshold level. A large enough sample period was
selected to suit the basic slow dynamic feature of the glucoregulatory system. Two types of external
mechanical devices, open loop and closed loop types, were used as insulin delivery systems. The
effect of the measurement noise and load disturbances are taken into consideration. A variable

forgetting factor was used to insure good tracking of system parameters. The results show that the
proposed controller is robust against measurement noise, load disturbances and time variation of
system parameters.
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1. INTRODUCTION

Insulin is the main anabolic hormone of the body.
In the absence of adequate insulin, body tissues are
broken down and some of their products are
converted into blood sugar, such excess sugar is lost
via the urine, and thus improperly metabolized,
while excess fat released from peripheral adipose
tissue contribute to acetone formation in the liver

until life-threatening keto-acidosis prevails [lJ.
Unfortunately, insulin replacement by a single
injection a day under the skin fails to simulate the
normal release of insulin in normal subject [lJ. In
this paper a continuous insulin provision to diabetic
patients through open loop and closed loop insulin
delivery systems and based on a STGPC has been
achieved. The results show that the controller

succeeded in simulating the pancreas action of
normal subjects. A nonlinear fourth order model
recently proposed by Salzsieder et al. [2] has been
used in which the renal excretion has been taken

into consideration if the blood glucose concentration
exceeds the renal threshold level. .

2. MATHEMATICAL MODEL

The nonlinear mathematical model of the

glucoregulatory system is described by the following
first order differential equations [2,3J:

XG(t) '"' -r(t) + s(t)-w(t)-v(t)-f(t)-b3 ZG(t)+Gexg
t (t) - k3 b4 (XG-Xr) - k3 r(t)

(r-O if XG < Xr)

s (t) •• bo ko - ko s(t) - bz b3 ZG(t)

f(t) = b1 Gexg - ko f(t) + bs Gexg
(bs •• 0 if (XG < Xr and YG••O)

v(t) •• bo b1 - ko v(t)

w(t) •.•b1 b3 YG(t) - ko w

YG(t) •.•-k1 YG(t) + al (XG(t)-Xw) + aZ XG(t)+Iexg
ZG(t) •• -k2 ZG(t) + k2 YG(t)

and

UG(t) .• s - v - w - f

where Gexg' Iexg and bo act as system inputs and the
outputs are the four state variables defined by the
blood glucose. concentration XG(t), endogenous
glucose balance UG(t), plasma insulin concentration.
YG(t), and peripheral insulin dependent glucose
utilization ZG(t), respectively. And t is a partial
balance which is only applied if the upper range of
linearity is surpassed (please see the end of the
paper for the undefined symbols).
The mathematical model of the uncontrolled

metabolic system (diabetic state) has the same last
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structure but with the control constants al""O and
az-O.
A sampling interval of 4 minutes is considered to be

suitable for this application [4].

3. GENERALIZED PREDICTIVE CONTROL
STRATEGY

The GPC assumes a Controlled Auto Regressive
and Integrated Moving-Average (CARIMA) model:-

where y(t) and u(t-k-1) are the output (blood glucose
concentration) and the input (Infusion Rate of
Insulin) respectively.

The input is delayed by a time delay k, ~ is the

differencing operator (l - z-I), ~ (t) is a sample of a
stationary independent Gaussian noise with zero
mean and A, Band C are polynomials in the
backward shift operator z, i.e.

A( -I) 1 -I -2z - + al z + aZ z +...
B(z-I) •. bo + bI z-I +...
C( -I) 1 -I -zz - + Cl z + cz Z +...

Let T(z-I) be an observer polynomial, used to
improve both the robustness and the disturbance
response of GPC.
Define:

y'(t) - (MY) y(t), u'(t) - (MY) u(t).

so that the resulting overall model becomes:

random changes of the system parameters if the
blood glucose concentration exceeds a certain
threshold level (renal threshold Xr). This means we
are in a need for an estimator which can track the

system parameters under these conditions. RLS

estimator with variable forgetting factor is found to
be reasonable for this situation. This idea is due to

Fortescue et al. [6] and relies on a time varying
forgetting factor p(t) which is automatically set so
that p(t) -+ 1 when the prediction error (the
difference between the actual output and the
estimated output) is small and r(t) is set to a small
value (P(t) < 1) if the prediction error is large; that is
to place greater emphasis on the recent samples and
allow the estimator to go towards the correct values
of the system parameters at this operating point
However, an additional mechanism to insure that the

covariance matrix Po(t) remains bounded has to be
imposed, otherwise even with a variable forgetting
factor the covariance matrix can grow exponentially.
For the variable forgetting factor algorithm, we
follow the following steps:

6(t) - 6(t-1) + K(t) (~(t)-X(t) 6(t-1)
p(t) •. 1 - t:Z (t)/[l + X (t) P(t-l) X(t)]

where

t:(t) - y'(t) - XT(t) 6(t-1)
K(t) - P(t-1) X(t)/ [l + XT(t) P(t-1) X(t)]
V(t) - P(t-l) - K(t) XT (t) P(t-l)

6 is the estimated parameters vector and P(t) is
the covariance matrix.

An upper bound (L) on P(t-1) is ensured by
updating as follows:

P(t) - V(t)/p(t) if trace (V(t)/p(t» ~ L
else

where X(t) and 8(t) are the measurement vector and
the parameter vector respectively:

The signals u'(t) and y'(t) are filtered by band pass
transfer functions, so that both high-frequency noise
and dc levels are removed.

3.1 RLS with Variable Forgetting Factor

P(t) - V(t) i.e. p( t) - 1.

The estimation procedure for the system
parameters is the well known Recursive Least
Squares (RLS) algorithm [5]. The non-linear model
of the glucoregulatory system is characterized by a

X(t)""[-y'(t-1), -y'(t-4), u'(t-k-l), , u'(t-k-4)]

e - [al az a3 a4' bo bl bz b3]
where k is a pure delay samples.
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N2 N.

JGPC(Nl'N1,N2,Nu,;')=E e1(t+j)+;.E [~u(t+j-l)t3)
J-Nl J-l

P(O) ••• 100 I, and e (0)=0 where I is the identity
matrix.

the

(4)

••..•••

Actual & Estimated outputs

..

where

A is the control weighting coefficient and
solution giving the minimum cost is then [7]:

- T IGT()Uopt - (G G + A If w - Yf

4. NUMERICAL SIMULATION RESULTS

••
Tmo lmlnI

Figure 1. Non-linear model.

The default settings of the GPC controller

(NI-delay, Nz-10, Nu-I, A -0) were used in both
the preprogrammed device and the artificial pancreas
results. The following initial values were found to be
satisfactory for Self-Tuning Control (STC):

and defining the following vectors:

y - [y(t+NI), ..., y(t+Nz)JT
ii ••[.:iu(t), .:iu(t+ l), .... ,.:iu(t+Nu-l)] T

Yf - [Ye (t+1/t),. Ye (t+2/t), ..., Ye (t+N2/t)]T

the predictions can be represented by the following
equation [7]:

where:

The GPC is a long-range predictive controller [7,8].
Fromthe above model GPC predicts future outputs,
given currendy available input/output data [y(t-i),­
u(t-i-l); i::s; 0] and depending on increments in
present and future controls [AU(t+j), j ~ 0]. one
important aspect of GPC is that after a future time
instant, called the control horizon Nu, these

increments are taken to be zero: [AU(t+j) - O,j~Nu].
Assume predictions are required for a range of

future times [t+N1, t+NZ] where:

3.1- The Long- Range predictor

NI is the minimum costing horizon and
Nz is the maximum costing horizon.

gNlgNl-l..0

gN1+1

gNl 0
G= gm-1

gm-2..gm-N

The elements of Gare gi' being points on the
plant's step response, :~an be computed recursively
from the above model, assuming zero noise and a

constant unit control input. Also the free response Ye

(t+j) can be computed for all j simply by iterating.
the plant model; assuming Ht+j) - 0 and that future·
controls equal the previous control u(t-1).

Consider the vectore.composed of predicted future'

system errors w(t+j) - y(t+j), w(t+j) is the set point.
The suggested future control sequence u(t+j) is
chosen by GPC at timet to minimize a cost function·
given by:

Figure (l) shows the actual blood glucose
concentration together with the estimated blood
glucose concentration, and they are identical. Figure
(2) shows the identified "A" and "B" parameters as
given by the RLS identifier. The trace of the
covariance matrix was plotted in Figure (3) with the
upper bound selected to be 5. Finally the variable
forgetting factor p(t) was plotted against time in
Figure (4). As shown in that Figure the value of p(t)
during the transient period (the first 10 samples of
operation) is small and after parameter tuning the
prediction error becomes minimum and the value of

p( t) := 1 and any increase in the prediction error
reduces the value of the forgetting factor and hence
increases the trace of the covariance matrix allowing
a chance for tracking the system parameters as
shown in the figure.
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of the non-linear model using RLS variable
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4.2 GPC Blood Glucose Regulation

4.2.1 Using Preprogrammed Devices

Figure (5) shows the system response with the four
state variables XG(t), UG(t), b3 ZG(t) and YG(t)
were plotted together with the insulin infusion rate
(control signal) required to regulate the blood
glucose concentration at the desired normal level.
The control signal is shown to have a biphasic action
of the pancreas which consists of a fast increase in
the insulin infusion rate at the step change instant
and then a constant infusion rate corresponding to
the constant basal rate of the pancreas secretion
when the blood glucose concentration reaches its
normal fasting level. It is noticed that there is a
difference between the insulin mediated glucose
utilization b3 ZG(t) and the net endogenous glucose
production UG(t) after reaching to the desired level.
We refer this difference to the loss of blood glucose
due to renal excretion which in turn reduces the net
endogenous glucose production.

4.2.2 Using Anijicial Pancreas

Figure (6) shows the system response, with the
four state variables plotted against time. A good
regulation of blood glucose concentration has been
achieved with a very small undershoot.

The GPC controller was tested against the same
severe load disturbances used in the linear model
application [4]. The controller shows a fast response
to these changes in blood glucose concentration
which appears in the fast increase of the injected
insulin rate over the basal rate and the increase of
the insulin controlled glucose utilization and the
reduction in the net endogenous glucose production
during the existence of that load as shown in Figures
(7,8). Note that a negative value for UG(t) means
glucose storage instead of glucose production.
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Figure 5. System response under GPC using non linear model (default setting, preprogrammed case).
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Figure 6. System response under GPC using non linear model (default setting, artificial pancreas case).
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-

,
••••

...,--"..y~

I •

If
• ••

--••..*.'_'1.'

I
<

11» ,_ liCIt 'm

-

UI
...._- •..--"

,•
- V••

••••••••••••••_.- ..•.

.•.."
..f.

•.•••••••uc;

100 JICO •• U 1_ "00 la»
T1In. ("*"

-J[-I.

Figure 8. Step load disturbance effect (GPC, default settings, non-linear model).
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Figure 9. Load disturbance & measurement noise effect T-(l-0.7 z·I)Z (GPC, default settings,
non-linear model.

List of SymbolsFinally, the effect of both the measurement noise
and the step load disturbance on the controller
behavior has been tested successfully with the fixed
polynomial observer T(z·l) - (l - 0.7 z·l)} as shown
in Figure (9).

5. CONCLUSIONS

A continuous insulin provisi~>n. to diabetic patients
through open loop and closed loop insulin delivery
systems and based on a STGPC has been achieved.
The controller is shown to have an inherent integral
action to achieve zero steady state error. The results
show that the proposed controller is robust against
measurement noise, load disturbances and time
variation of system parameters.
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circulating blood glucose concentration.
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reference value at which glucose-eontroJled
insulin provision becomes zero
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Measurement Units

mU/min milli Unit per minute (fhe measurement
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nmol/l nano mole per liter of blood (The
measurement unit for circulating plasma
insulin concentration).

gm/min gram per minute (the measurement unit
for:

1) infusion rate of exogenous glucose
2) rate of insulin mediated glucose

utilization, and
3) rate of endogenous glucose production.

mg/dl milli gram per deci liter of blood (the
measurement unit for circulating
concentration of blood glucose
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