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or stereology, is solved for a wide class of input functions g(x) using a procedure based upon analytic function
theory and our-knowledge of two familiar integral transforms. Practical sufficient conditions for the validity
of the solution representation are given and illustrative examples are presented.

Integral equations of the first kind are typically far more
difficult to solve than those of the second kind.
Exceptions occur in the case of difference, product or
quotient kernels, ([see for example 6, PP. 364 ff], [7]),
and when transform techniques are applicable. The
problem-at hand falls into this latter category.

Our interest is in finding the function f(y) which
satisfies the integral equation.
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g(x) = !J;(Y)f(y)dy,x ~O (1.1)

Where g(x) is a known function of the non-negative real
variable x and Jx (y) represents the Bessel function of the
first kind of order x and argument y. The squared Bessel
function kernel and the appearance of the independent
variable in (1.1) are a bit unusual. Nevertheless, an
inversion formula for this integral equation does exist and
can be derived using a procedure based upon analytic
function theory and our knowledge of two familiar
integral transforms.

We begin our formal analysis by noting that, as a
function of x, the kernel Jx2 (y) is well behaved (see [1],
for example). Indeed, it is an entire function of x,
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The implication of these observations is that, for
reasonable f(y), the right-hand side of (1.1) should be
analytic in a domain including the right half of the
complex plane Rx ~ 0 and should tend to zero as

x-'oo, I argx I ~ .!-o(o>O).
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If we are to have any success in solving (I. 1) then, the
known function g(x) should share this same behavior. In
what follows we shall also assume that g(x) has a
nontrivial imaginary part when x is purely imaginary,
since Jx2 (y) has this property. This is important since we
will actually solve the given integral equation for purely
imaginary values, of x. The principle of the permanence
of functional equations [4] then ensures that we have
thereby in fact also solved (I. 1) for real non-negative x.

Our approach uses the easily verified Bessel function



identity [l,PA].

Jx2 (y)-J.x2 (y)=sin 1rX [Jx (y)Y.x (y)+J.x (y)YX<y)]
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(see [l,P.97] or [3, P. 727]). As a consequence, if we
consider (1.1) for purely imaginary values of the
independent variable, it follows that
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To obtain this last expression we have formally
interchanged the order of integration which resulted from
the various substitutions in (1.1). The right-hand side of
(1.2) is in the form of a familiar Fourier cosine
transform.

In view of the nature of this classic transform ([2; vol
I, chapter I], [8]), if we replace x by x/2, it follows
readily that

! G(x) cos xt dx= ! Jo (2y cosh t) f(y) dy,t~O (1.3)

G(x) = -Imag g(ix/2)
sinh ~x/2

Since g (x) given, the expression on the left-hand side
of (1.3) is known, and this relation thus represents a new
integral equation for the unknown function f(y) equivalent
to (1.1). The form of (1.3) with the Bessel funct~on kernel
occurring only to the first power, however,engenqers a
straight forward solution; the right-hand side of (1.3) is
nothing more than (essentially) the Hankel transform of
f(y)/y, ([2, vot. I1, chapter VIII], [8]). A simple inversion

f(y) ~ y ITJ,(YT) [IG(x)cosxtdx ] dT ,y ;"0(1.5)

As mentioned before, we restrict attention to functions
g(x) which are analytic in domains including the right
half plane Rx ~ 0, are not purely real when Rx = 0,
and tend to zero as X'" 00, I arg x I ~ ~/2 - 0 (0)0) .

There then are three areas of the formal derivation
which need to be firmed up:

i- The inversion of the Fourier cosine transform
arising form (1.2).

ii- The inversion of the Hankel transform appearing
in (1.3).

iii- The necessary interchange of the order of
integration which followed application of the
integral representation for the Bessel function
cross-product. We take up these matters in order.

The well-known Fourier theory itself suggests a
reasonable sufficient condition for the inversion with the
cosine kernel (see [8, PP. 13 ff.], for example:
G(x) given by (lA) belongs to L (0, 00) and, say is
continuously differentiable. [AJ

Titchmarsh [8, PP. 232 if] has also extended the
classical theory and provided an analogue of the Fourier
single-integral formula for a wide class of kernels whose
Mellin transforms do not differ greatly from that of
cos x, As a special case he has established.

If F (T) belongs to L (0, 00) and is of bounded
variation near the point T, then for v ~ -1/2

- -
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to the following sufficient condition, in the spirit of [A],
for the solution of the integral equation (1.3):
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F !G(x) cos xtdx, where G(x) is given by (1.4) and

T • 2 cosht, belongs
to L(O, 00) as a function of T and, say is continuously
differentiable. [B]

Fubini's theorem governs the interchange of order of
integration. Owing to the many repeated integrals which
occur when the representation (1.5) is substituted in (1.2),
however, it is easier to state the needed condition (s) in
terms of the behavior of f(y) rather than of G(x).

Accordingly, using the Tonelli-Hobson extension of the
Fubini result (see [5, P. 630] for the finite case), we

assume either l dy l H (x, y, t) dt < 00

! dt! H (x, y, t) dy < 00

Where H(x,y,t) • IJo (2ycosh t) cos 2 xt f(y) Iwith f(y)
given by the formula (1.5).

It should be noted that the conditions [A], [B], [C] are
unnecessarily stringent, and the solution of (1.1) can be
effected by the representation (1.5) in many cases when
one or more of these three criteria does not prevail.
Nevertheless, the conditions as given constitute a good
practical guide to when the various steps taken to effect
the solution of the original integral equation are
completely justified.

The following two examples have been chosen to
indicate the nature of the calculations implicit in
utilization of the formula (1.5)

g(x)= 1 ([;2:1-a)2X
4 a[;2:1

sin(xln(Va2+1 -a»
sinh -rxl2
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f G(x)cos xtdx = I?
4a2+o

by Virtue of [3, P. 678] where ~ represents the zero-
order modified Bessel function of the third kind.

As a check of our calculations we note that

[3, P. 672]. For completeness, we also observe that all
three conditions [A], [B], and [C] are valid in this
example. The verification of [C] is a consequence of the
fact that

Ko (2 ay) ~ const. e-2ay

(x)= r;nr(x+l/4)
g r(x +3/4)

owing to the nature of the gamma function, g(x) is
analytic for Rx > -114 and behaves like x·1I2 for large x.
In this case we have



G(x) = 1.v; I r(ix/2 + 1/4) 12
2

J G(x) cos xt dx = ~H-112
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where r • 2 cosh t [3,P. 657]. From this intermediate
result we are then led to

00

f(y) = y J rJo(yr) 1rr-1/2dr
o

owing to [3. P. 692] only condition [A], however is
satisfied. This case therefore, typifies a wide class of
examples in which the alternating sign character of the
cosine and Bessel function kernels is able to overcome a
(marginal) lack of integrability on the infinite interval.
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