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This paper presents a simple, inexpensive, iterative method for eigenstructure assignment. The aim is to
get a robust solution in the sense that the sensitivities of the closed-loop eigenvalues, with respect to
variations in the system matrices, are minimized. The algorithm is illustrated on four small size examples
and compared to the existing methods. A matrix inversion method, specially suited for most of the
occurring cases, is included.
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The problem of eigenstructure assignment by state
feedback has been the object of various researches and
has benefitted from different numerical techniques. The
two major trends in the last decade and till now are:
direct and iterative algorithms.
In the single input case, where the gain is unique and

the poles sensitivities can not be controlled, a
numerically stable direct method is advisable since it
gives results which are as accurate and robust as the
data permit. One of the most reliable ones is [14J and
some inexpensive ones are [1] and [6J.
In the multi input case, where there are several

degrees of freedom in the solution, even though a
direct algorithm is numerically stable and guaranteed to
compute an accurate gain, it is highly probable that the
arbitrarily selected solution will not, in general, be
robust and then, even small perturbations in the data or
errors in the gain may give large errors in the
prescribed poles (as shown in [11]).
Iterative methods, by contrast, aim to select from the

possible set of solutions, a feedback which minimizes
some measure of the sensitivity of the closed-loop
poles. The most famous methods in this group are the
ones in [9J. (More about direct versus iterative
algorithms can be found in [12], [15J and [16]).
In the case of large scale systems, the standard

technique is to reduce them to block Hessenberg form
by means of orthogonal state coordinate

transformations. The next step is either to decompose
them into small size pole assignment problems as in
[4], [5] and [18], or to project them into subspaces to
obtain a reduced order problem as in [10] and [13].

In this paper we present a reliable, inexpensive
method with different robustness measures. One of
them is specially implemented for third order systems,
and the others can be applied to systems of higher
orders.

Consider the linear, time invariant multiinput system
with dynamic state equation

where the state x(t) and the input u(t) are n and m
dimensional vectors respectively, n > m, A and Bare
real constant matrices of compatible orders.

The poles of this system are the eigenvalues of A.
The pole assignment problem consists of choosing a
state feedback control

(Le. choosing K€Rm xn) so that the closed-loop system
x(t)= Ac1 x(t) + Bl'(t), Ac1 • A + BK



has a specified set of poles 5£ = {~}.
When the pair (A,B) is controllable, a matrix K

exists for every choice of 5£. Otherwise, all the
uncontrollable modes of (A,B) should belong to any
choice of :£ [23]. Also. it is obvious that. since the
system matrices are real. complex eigenvalues must
appear in conjugate pairs in order to find a real K.
Multiplicities are allowed with condition that the
closed-loop matrix is non defective (Le. semi simple);
we have

where X is the matrix of right eigenvectors. A is a
diagonal matrix containing the required eigenvalues.
In the single input case (m= 1) there is at most one

solution. but if 1<m <n, multiple solutions may exist
and extra conditions may be imposed to give Acl other
desirable properties.

Typically, the data. A and B are not known exactly
and are subject to perturbations. Hence it is desirable
that the chosen poles be as insensitive to changes in Acl
as possible. In [9] and [12], the conditioning of the
closed-loop poles is taken as a measure of robustness.
as follows: Let Xi and Yi. i = 1,2•... m, be the right
and left eigenvectors of the closed-loop system matrix,
corresponding to the eigenvalue ~ E:£. Then the
magnitude of the condition number ci'

should be kept as low as possible to ensure robustness.
When yT is taken equal to X-I. ci= 11Yi~ ~Xi11. If a
perturbation O(f)is made in the coefficients of Acl. then
the corresponding first order perturbation in the
eigenvalue ~, is of O(f n ci)' [9].
An upper bound on the sensitivities of the eigenvalues

is given in [22]

>

m~ ci ~ 'Y2(X). ~X 112 Ilx -1 112 El :.:: (3.2)

where "Y(X) is the condition number of the matrix X,
(11(X) ~ ... ~ (1n(X) are the singular values of X.
So a necessary condition for a robust solution is that

the condition numbers be minimized. They attain their
minimum val.ue ci= 1 for all i, if and only if the
closed-loop matrix is normal. That is to say. in the
ideal case it should satisfy

from which we can deduce a bound on the "measureof
normality" defmed here as the norm of the difference
between the l.h.s. and r.h.s. of (3.3), Le.,

11 ACITAcI-AcIAc? 11 ~ 11 Ac?AclII + 11 AclAclTl1

~ 2 ~AcITII IIAcll1

and since for Frobenius or £2 norms 11 MT
11 = 11 M 11,

then an upper bound on the" relative measure of
normality" is

IIAclT Acl - Acl AclTII / IIAF ~ 2 Y(X).

For £1 and £ 00 norms, we have 11 MT III = 11 M 11 0)'

then

which means that. for a specified set of eigenvalues,
any increase in "Y worsens greatly the measure of
normality. This same conclusion is also drawn from
the definition of the "departure from normality" [8J

n

~Nlll = IIAcdll- L I~ 12=£12 (Acl)
i=1

n

~ ("Yl(X) - 1)L I~ 12

i=1

Le. to minimize £1(Acl). we should minimize "YF(X)
According to [21], the /2 condition number ofa



realnon-singular matrix, 'Y2(X) defined in (3.2) can be
minimized by choosing an appropriate scaling matrix.
For a matrix M and a scaling matrix S, let Mo denote
the optimally scaled matrix Mo = M So' and M1
denotes the matrix M St.rwith SI chosen such that the
diagonal elements of M1 M1 are equal to one.
Then M1 is an "approximate" optimally scaled

matrix, and the ratio

That is why in this paper, we impose the column
normalization condition

for each eigenveetor such that the matrix (XT X) has
ones as diagonal elements.
In the perfectly conditioned case, XT X is a unit

matrix. The minimization of 'Y2(X) is now equivalent
to the minimization of the residue matrix R = XT X -
I. This matrix is symmetric and has the very simple
form

o cos 812

cos 812 0
R= (3.4)

where 8ij is the angle between Xj and ~.
Another advantage is that the conditIon numbers
defined in (3.1), become directly

Here there are TUn variables over which to' optimize.
This is a large number even for modest values of n and

m and the constraint is highly non-linear.
methods have proved to be effective. The minim~ation
of ~R 112gives always the best results with respect to'Y
(X) and also the v measure = maxi Ici I. This makes
it the best choice for rapid results in all general
cases.4. PARAMETERIZATION OF THE PROBLEM

Instead of solving (3.5), we parameterize the problem
as in [9].

~. Get the singular value decomposition (SVD) of
B

where the dimensions arerespectively. U = [UO I UI]
is the orthogonal matrix containing the normalized
eigenvectors of BBT, V is the orthogonal matrix
containing the normalized eigenvectors of BTB, and
ai' i= 1, 2, ... , m are the m singular values of B.
B is assumed of full column rank (m). This condition
is always satisfied since, if rank (B) < m, it means
that the inputs are not independent and thus can be
reduced in number.
The above factorization (4-1) can be written

where Z is a non singular matrix, and may also be
obtained by QR decomposition of B.

~. Premultiplying (2.1) by U1
T gives.

U? (A X - X A) = 0

Then a matrix K satisfying (2-1) exists if and only if X
satisfies (4-2), i.e. each eigenvector Xi of Acl, must
belong to the space



matrix is of order (n-m) Xn.
Let Si be an nxm matrix with columns spanning the
space Si' let wi be an m x 1 vector containing the
coordinates of the eigenvector "i with respect to this
basis, such that

and the eigenvector matrix X is now expressible as a
function of the w's

x = SW = [SI I ~ I ... So] diag (wI, w2,··· wo)

where S is a matrix of order (nxnm) and diag (wI, w2,
... wo) is an (nmxn) block diagonal matrix with mxl
blocks.
In the case of controllability, dim (Si) = m. Then the
number of w's is nm. This number may be reduced to
n(m-l) by expressing (m-I) of the coefficients in each
wi, in terms of the remaining one.

The computational problem then becomes the
unconstrained minimization of the specified measure of
robustness, as a function of the w's.

~. The feedback matrix can be easily obtained by
premultiplying (2.1) by Uo

T to get

If Z was obtained by QR decomposition, K will be
obtained by back substitution, or by isolating K if SVD
was used

K= Z-I Uo
T (XAX -I-A)

Z-I in this case is easily obtained from

[

1/ (11

Z-I =v
o

As for the inverse of X, since the "i's must be
maximally orthogonal to each other in any acceptable
solution, and also normalized, then the process is
satisfactorily stable. For a commonly occurring case
(see section 5) of an eigenvector orthogonal to all the

others, a very simple algorithm is presented in section
6. The minimization technique used in step 2 is a
modified version of the "simplex" optimization
technique for non-linear, unconstrained objectives [17].
Its main step is a comparison of function values at the
corners of the simplex. Here we change the size of the
simplex (delta) to ensure that the obtained minimum is
not a local one.

We have noticed from the results in section 5, thata
commonly occurring case is the case where one of the
eigenvectors is orthogonal to the other two. Since the
order in which the eigenvectors are cited in the matrix
is immaterial as long as it is in accordance with the
order of the A's in A, we will describe here the case
where XI is orthogonal to both x2 and x3

The Xi'S are normalized such that 11 Xi I1 = 1 vi.

Le. cos 823 = x2T x3, and it is required to

such that yT is the inverse of X: xyT = I.
Premultiplying by XT and substituting, we get

Then it is easy to see that YIT = XIT Le. the vector
orthogonal to the other two is unchanged, and



fromwhich

[ T]Y2 1
Y3T = sin2 823

Thus the inverse is reduced to a very stable process.
Even in the neighborhood of singularity, when 823 is
very small, the only condition is that sin2 823 and
lIsin2 823, be within the machine lower bound and
upper bound respectively.

The measures of robustness considered here are
1. The £1 norm of R (which is equal to the £ 00 norm

since R is symmetric)

n

1I R ~1 = max L I rij I .
j i= 1

Minimizing 11 R III is equivalent to mininizing

n-l n
10= L L I rij I .

i=l j=i+l

11 R III S n max I rj" I• • IJ
I.J

and since all the diagonal elements are zeroes and
the rij are cosine functions, we get

10represents the sum of the magnitudes of the
cosines of all angles between the eigenvectors, Le.
10is bounded by their number:

which is equivalent to minimizing
n-l n

1= L L (ri)2
i=l j=l+l

IlRllp ~ J n (n-l) andl S n (n-l)l2.

IIRI12 = max I ~ (R) I
i

In the case n = 3, this quantity is easy to get by
solving the characteristic polynomial of R which
readily has the form of the reduced cubic equation

q = - 2 IT cos 8r a -2h,,,' . ~.1,J

ts = l:-{f cose~+2~(S-1)), s=I,2,3
f3 .

where f3 = cos-1 (-J 27h / [(i)3) [2].

From matrix norm relations [8], and since R is
symmetric,

IIRI12 S III Rill 11 R 1100 = 11R "1

IIRI12 S (n-l)



IIRI12 < {n 11 R III and 11 R Ib ~ 11 R IIF'

For each example, different initial guess points were
tried and gave the same minimal point. The difference
was in the number of changes of delta required. This
maximum number was 4.
The first three columns of the tables show the results

of the minimization of10,11 R 112 andI respectively

Example 1. A = [~ ~ ~
6 -11 6

1 0
B = 0 1

1 1

The required closed-loop eigenvalues are:
;:e = {-o.2,-o.2, -1O}.The results are shown in Table
I. The fourth and fifth columns contain the best results
of [19] and [20] respectively. The three last columns
contain the results of methods 0,1,2/3 of Kautsky et al.
1983, 1984, as reported to us by [19]. (The
eigenvector and feedback matrices are not available).
Their measures of robustness are

VI = 11ell OD = m~ I cd
1

(11 c112 equals 11y 11 F so long as X is normalized. In
[20] the obtained X is not normalized and hence;
11c Ib = 2.616 not 2.4).
We notice that all methods give acceptable good

results for this example. Method 0 of [9] was criticized
by [3] as being heuristic and typically it does not
converge. Method 1 alters X one column at a time
performing inexpensive local optimization at each step
but is generally slow. Method 2/3 does not attempt to
minimize 'Y(X)as claimed, but instead it optimizes a
related heuristic measure of condition. Also it does not
perform well on ill-conditioned problems. The method

in [19] is slow and difficult to implement and thatin
[20] requires gradients and thus is expensive.

1 1
B = 0 1

1 1

The required closed-loop eigenvalues are :£ = {-I,
-2,-3}. The results are shown in Table n.

Example 3. This example is given in [3] after
Atkinson (1985).

A = [~
-6

1 1

o 1

1 1

1 0
o 1

-11 -6

The required closed-loop eigenvalues are:
;:e = {-1,-2,-3}. The results are shown in TableIll.
The fourth and the fifth columns expose the resultsof

[3] after full convergence and half convergence
respectively. The measure of sensitivity is the
Frobenius norm, but the minimization needs explicit
formulae for the gradient and Hessian of the objective
function. The numerical stability of the straight
forward procedure for derivatives, is in doubt. The
more circuitous method via the SVD yields easyto
compute factors, but the cost is considerable. The
method delivers highly accurate minimizers but these
are not often required in practical applications.
(Here also X is not normalized and hence 11 c 1\2 =7.75
not 3.445).

[

0 1 0 [1 0
A=OO I.B=OO

4 4 -1 0 1

The required closed-loop eigenvalues are:
;:e = {-2,-3,-4}. The results are shown in Table IV.



In [7] the freedom in eigenvectors selection is used to
produce designs such that only certain modes appear in
each state (and hence in each output). In our example,
it is a coincidence that the required combination of
modes corresponds to the maximally orthogonai set of
eigenvectors. We remark that the first and fourth
columns are almost identical, except that in [7] the ~
's are not normalized and hence 'Y(X) is increased and
also Ilclb = 6.595 not 2.549. The disadvantage of 0'

Azzo's method is that the size of the problem is

increased to (n+m) x (n+m) since he gets the null
space of (A-\I) augmented by B. This, compared to
our method, is very expensive both in time and in
storage. Our method gets the null space of the reduced
matrix U? (A- \ I) which is of size (n-m)xn.
In all examples, it is clear that the introduced
methods have proved to be effective. The
minimization of 11 R 112 gives always the best results
with respect to 'Y(X) and also the " measure = maxi
ICj I. This makes it the best choice for rapid results in
all general cases.

10 11 R 112 I [19] [20] 0 1 2/3

IIRU 1 0.82943 1.1503 0.949 0.8292 1.6

IIR~2 0.82943 0.82943 0.86545 0.8293 1.5148

IIRh 1.1724 1.17192 1.0672 1.1727 1.1668

812 90° 90° 70° 90° 106°.55
813 146° 133° 61.6° 90° 142°.62
823 90° 62° .4 118° 33°.9 36°.9

Cl 1.79 1.585 1.67 1 1.36 1.43 1.473 1.59

c2 1 1.3 1.67 1.789 1.38 1.47 1.425 1.41

c3 1.79 1.78 1.78 1.789 1.749 1.49 1.789 1.79

IIYh 2.722 2.72 2.97 2.53 2.4

'YF (X) 4.7146 4.714 5.147 4.383 4.506

'Y2 (X) 3.273 3.273 3.36 3.273 3.292 3.273 3.273 3.28

U K UF 16.42 16.47 16.49 16.5 16.19

~ K 112 16.38 16.43 16.46 16.46 16.16 16.49 16.49 16.54
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fo 11 R 112 f
R 1 0.98298 0.99101 0.9965
R 2 0.98298 0.98299 0.9917
RIF 1.39014 1.39 1.2147
812 90° 89°.05 120°
813 10:58 10°.6 60°
823 90° 90° 60°
cl 5.443 5.445 6.416
C2 1 1.0014 6.364
C3 5.443 5.445 6.4209

IIYh 7.7635 7.766 11.08
'YF(X) 13.446 13.45 19.20

\\~\I~ 11.446 11.44 11.06
11.31 11.30 10.913

10 ~ R b f [3] full [3] half

IIRlll 0.985 0.98926 0.99748 0.9829

IIRh 0.985 0.98293 0.99155 0.9829

IIRIIF 1.393 1.39005 1.21448 1.3900

812 90° 90.17 90.67 90°
813 10°.3 10°.61 59.63 10°.6
823 90° 89°.63 119.47 90°

Cl 5.433 5.435 6.33 5.432

c2 1 1 6.27 1

c3 5.433 5.535 6.34 5.432

Ilyllf 7.748 7.7519 10.94 3.4458
'Y(X) 13.42 13.426 18.95 11.87 14.43

'Y2(X) 10.8 10.7811 13.354 10.77 13.15

IIKIIF 9.07 9.068 7.5037 9.446

IIKII2 9.068 9.0655 7.49878 9.44 12.6

fo 11R 112 f [7]

I R 11
0.976 1.03 0.997 0.976

R /2
0.976 0.976 0.987 0.976

I R F 1.38 1.34 1.03 1.38

812 90° 87°.6 60°.6 90°
813 12°.528 13°.77 59°.5 lr.528
823 90° 93° .4 118° .9 90°

Cl 4.609 4.613 5.2157 4.609
C2 4.609 1.1 5.13912 4.609
C3 1 4.617 5.13912 1

11Y!IF 6.595 6.619 8.9768 2.549
'YF (X) 11.423 11.465 15.548 12.227
'Y2 (X) 9.1173 9.134 9.5614 10.908

I~ II~ 13.96 13.978 10.499 13.964
13.72 13.74 9.9848 13.7197

In this paper we discussed the case of third order
systems with respect to different measures of
robustness. The method proved to be efficient and
inexpensive as compared to other methods. A measure

of normality is introduced and its bounds calculated.A
straight forward expression for the calculationof
11R 112 is deduced and found to yield the best results.
A matrix inversion scheme is proposed which exploits



the special quasi-orthogonal eigenvector matrix
obtained. The same iterative minimization for both10
andI gave good results for higher order systems and
will be reported elsewhere. A special implementation
for 11 R 112 is being studied. Also the case of non
semisimplematrices, or eigenvalues having more than
ID multiples must be further investi~ated.
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