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In this paper, the transient thermal stress problem for circumferential crack in a cylindrical shell and a
plate on an elastic foundation are investigated. The shell is approximated by a plate on an elastic
foundation. Using the principle of superposition, the formulation results in a singular integral equation
which is solved for an edge crack geometry. The numerical results presented include the transient
temperature and thermal stress distributions in the uncracked plate, the stress intensity factors as a
function of nondimensional time (Fourier number), the crack length,and some values of Biot number.
Also, the influence of the stiffness of the elastic foundation on the stress intensity factors is presented.
The results are compared with Nied's work for circumferentially cracked hollow cylinder problem and
showed satisfactory approximation.

The important failure mode in many structural
components is the cracking of the material under
transient thermal stress. In the literature, there are
many studies of crack problem subjected to thermal
shock. The problem of a cracked plate subjected to
sudden cooling with free boundaries has been discussed
in [1,2]. Rizk [3] considered an edge cracked plate
with one free and one fully constrained boundaries
subjected to convective cooling. Nied and Erdogan [4]
analyzed the stress intensity factor for a
circumferentially cracked hollow cylinder under
transient thermal stresses.

In [4] the problem was solved by using a general
technique fQr the solution of three dimensional
elasticity problem in cylindrical coordinate with mixed
boundary conditions imposed along a plane
perpendicular to the cylindrical axis which is very
complicated and intractable. In the solution the
displacements and stresses are expressed in terms of a
single potential function and a set of four harmonic
functions equivalent to Papkovich-Neuber potentials in
cylindrical coordinates. Fourier and HankIe transforms
are used to formulate the problem with proper
boundary conditions resUltingin, after lengthy analysis,
a singular integral equation with two Fredholm kernels
Lt, ~' The numerical solution of the singular integral
equation was obtained by using a Gaussian integration

procedure which had some difficulties in evaluating the
Fredholm kernels due to unbounded terms at the end
points, slow convergent, and computational of
Lommmel's functions. It is well known that the
cylindrical shell may be modeled by a plate on an
elastic foundation [5]. This model will make the
problem of circumferentially edge cracked cylindrical
shell under transient thermal stresses analytically
tractable. The Fourier transform is used to formulate
the mathematical model with suitable boundary
conditions to obtain the singular integral equation
which is solved numerically in straight forward manner
by using expansion method. this method is easy to use
and gives faster convergence when compared with the
other method without any difficulties. So, the problem
of interest is to study the edge cracked plate on an
elastic foundation subjected to convective cooling on
the surface containing the edge crack which is shown
in Figure (1-a). The results are compared with Nied's
results [4] for RtIH = 9, which may be considered as
a shell, and showed that the approximation is
satisfactory. The results are extended to different
values of Rt/H, and also for different values of
normalized stiffness of the elastic foundation 17E/H.

It is assumed that, the present ~ansient thermal stress
problem is quasi-static, Le, the inertia effects are
negligible. Also the thermoelastic coupling effects and



the dependence of thermoelastic coefficients on
temperature are negligible. By taking the advantage of
the linearity of the material, the principle of
superposition is used resulting in a singular integral
equation which is solved numerically. The main results
of the fracture problem are the stress intensity factors
which are given as a function of Fourier number, crack
length, Biot number, and the normalized stiffness of
the elastic foundation.

la
Figure I-a. Edge cracked plate on an elastic
foundation intial at To, cooled by ambiant temperature
To at x=O and insulated at x=H.

For analyzing the cylindrical shell cracked problem
depicted in Figure (I-b), it is approximated by a plate
on an elastic foundation with stiffness related to [5]

11 = EH/ R~

where E Young's modulus, H the thickness' of the
cylinder (Ro - Ri), Rn the mean radius of the cylinder
~ + H/2).

T To a

Figure I-b. Geometry of a cylindrical shell of
thickness H = Ro-Ri containing axisymmetric
circumferential crack.

The principle of superposition technique is used to
formulate the problem. First the transient temperature
distribution is obtained to use it in the uncracked
problem to determine the transient thermal stress
distribution. Then, applying the equal and opposite of
these thermal stresses to the crack surface to solve the
crack problem.

Referring to Figure (1), the temperature distribution
is obtained by solving the diffusion equation

;PO(X,t) =~ oO(x,t)

ox2 D ot



and T(x.t). To are the temperature in the plate at time
t. and initial temperature. respectively. 0 is the
thermal diffusivity.

The plate is assumed to be suddenly cooled by
convection at the surface x = O. with heat transfer
coefficient h. and ambient temperature Ta. while it is
insulated at the surface x = H. The initial and
boundary conditions are

8(x.0) = 0 (4)

k 08~~.t) = h[8(0.t)-8ol (5)

o8(H. t) = 0 (6)
ox

where

8~ = Ta-To (7)

The solution of equation (2) with the conditions (4-6)
is given by [3]

where r* is the Fourier number defined by tD/H* •x =x/H. and ~ are the eigenvalues determined from
the transcendental equation

THERMAL STRESSES IN THE UNCRACKED
PROBLEM

A cylinder shell which is subjected to a radial
temperature variation can be assumed to undergo
uniform strain over the shell thickness. So. the beam
on an elastic foundation is also subjected to uniform
strain eo (t) over the thickness H. Le. it would remain

flat under the self-equilibrating transient thermal
stresses. Thus the thermal stresses and strains would
satisfy the following relations :

T
q =0xx

H! q~ dx = 0 (12)

By following [3]. the thermal stresses in the plate
may be expressed as

q~(x * .r)(l-p) =2:E __ s_in_2_~__ e -1' ~

aE(fo -Ta) n=l 2 ~
X;;+-sin2~

2

00 sin An cos ~ (x * -1) -1' ~

-2 E ------ e (13)
n=l An +.!. sin2 ~

2

The crack problem shown in Figure (I-a) may be
formulated by using the stress given by equation (13)
with an opposite sign acting on the -crack surface. The
governing differential equations for the displacements
in the plane elasticity are

where u. v are the displacement components in x. y
directions. K = (3 - 4 v ) for plane strain. Because of
symmetry. the problem is considered for 0 < Y < 00

and subjected to the following boundary and mixed
boundary conditions



Uxy (O,y) = 0

Uxy (H ,y) = 0
v (x, 0) = 0 , 0 < x < a , b < x < H

(19)
(20)

Uyy (x,O) = p(x) = - U~

After lengthy but straight forward analysis [2], we
would obtain the following singular integral equation of
Cauchy-type

b b

J :~~dS+ J k(X,S)<P(S)dS-1I"~+1)p(x),a<x<b
a a ~

(22)

where p. is the shear modulus, <p (s) is the unknown
function called density function defined by

<p(s) = ov(x,O)ox
The expression of the kernel k(x,s) includes the

generalized Cauchy kernels, and can be found in
Appendix A.

. Following [6] the unknown function <p (s) for an edge
crack is given by

<p(s) = g(s)
(b-s)ll2

where g(s) is the unknown bounded function with
g(O) .,t. 0, g(b) .,t. O. The main quantity of interest is the
stress intensity factor defined by

K(b) = lim J2(x-b) uyy(x,O)
x--b

By using asymptotic analysis [6], equation (25) may be
reduced to

K(b) = - 4p. .fi g(b),,+1

The stress intensity factor can be calculated from
equation (26) after solving the singular integral
equation (22) for the unknown function g(s)
numerically. The numerical solution is obtained by
using expansion method procedure described in [7].

Figures (2-3) show the normalized transient
temperature and thermal stress distributions for the
most dangerous case (Bi = (0) which corresponds to
unit step cooling temperature at the surface boundary
x = O. The results are plotted against the
dimensionless distance x* = x/H, for different values
of dimensionless time (Fourier No. r= tD/H2). Also,
the results for the case of transient thermal hollow
cylinder problem [4] for Ri/H = 9 are presented in the
same figures for comparison. It can be seen that the
plate on an elastic foundation provides a good
approximation for a cylindrical shell.
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Figure 2. Transient temperature distributions for
Bi= 00.

The stress intensity factor obtained from equation (26)
is normalized by

K * (b) = K(b)(1-v)
Ea(fo -Ta).;b
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Figure 3. Transient thermal stress distribution for
Bi= 00.

and are shown in Figures (4)-(8). In Figure (4), the
normalized stress intensity factors are plotted against
the normalized time T, for Bi = 00, normalized
stiffness of the elastic foundation 17H/E = 0.01108,
and different values of the normalized crack length
b/H. The normalized stiffness 17H/E = 0.01108
corresponds to cylindrical shell of ~/H = 9 through
equation (1). The results are compared with Nied's
results [4] and showed good approximation too.
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Figure 4. Normalized stress intensity factors for
different values of normalized crack length, Bi= 00,

17HIE = 0.01108, R/H =9.
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Figure 5. Normalized stress intensity factors for
different values of normalized stiffness "HIE, Bi= 00,

b/H = 0.3

Figures (5)-(6) demonstrate K* versus T, for two
different values of b/H = 0.3, 0.5 and different values
of normalized stiffness of the elastic foundation "HIE.
The values of l1HIE = 0.00108, 0.00238, 0.00418,



0.01108,0.12457 are related to R/H = 30, 20, 15, 9,
2.333, respectively. It should be noted that, the values
of ~IH = 2.333 represents a thick hollow cylinder, so
the results obtained should only be applied for a plate
on an elastic foundation with normalized stiffness
l1HIE= 0.12457. Then the approximation may be good
only when l1E/H < 0.01108 <Ri1H= 9). The Free and
fully constrained boundaries case [3] are also shown in
the same figures l1H/E = 00. It can be observed from
the figures that, for a given crack length, K* first
increases, reaches a peak value and then decreases as
T increases. Also, it may be shown that, at a given
time, K* decreases as the crack length increases. This
is because the resultant force due to transient thermal
stresses on the crack surface decreases as the crack
length increases. It can be seen also that, as the
normalized stiffness of the elastic foundation increases,
K* decreases.
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Figure 6. Normalized stress intensity factors for
different values of normalized stiffness l1H/E, Bi= 00 ,

b/H = 0.5

The influence of the Biot number on the normalized
stress intensity factors can be shown in Figures (7-8).
Two different values of Biot number are used Bi = 00,

20. Figure (7) shows K* versus T for normalized
stiffness l1H/E = 0.00416 (R/H = 15), and different
values of normalized crack length b/H, while Figure
(8) shows K* versus T for b/H = 0.4, for different
values of normalized stiffness l1H/E~ As we expected,

the smaller Biot number, the smaller K*.
In conclusion, the cylindrical shell may be

approximated by a plate on an elastic foundation which
makes the solution of the problem much easier thanthe
shell problem. Also, as the stiffness of the elastic
foundation increases the stress intensity factor
decreases.
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Figure 7. Normalized stress intensity factors for
different values of b/H, Bi= 00, 20, l1HIE = 0.00416
<Ri/H= 15).
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Figure' 8. NormaliZed stress intensity factors for
different values of l1H/E, Bi= 00, 20, b/H = 0.4.
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The kernel k(x,s) in equation (22) takes the following
form

00

k(x,s) = !G(x,s,w) dw

where

G(x,s,w) = - 2~ {(Il rl +I2q2) e(8+x-2H)w

+(I2ql +I
1
S

1
) e-(8-x+2H)w

+(llr2+12q3+IlS2) e(8+x-4H)w

+ (Il 12+11S3) e -(8 -x +4H)w

+(r
1
ql +I3S

1
) e-(8+X)W

( I S ) (8-x-2H)w+ r 1q3 + 3 2 - q2r2 e
+(llrl +I3S3) e-(8+x+2H)w

+(-I1I3-I1q2) e(8-x-4H)w}

K+l11 = I-p-
2

K+l12 = 3 -2(H -x)w +P-2-

K+l13 = 3 +2(H -x)w -P--
2

K+lql = (1-2sw)(2Hw-p_)-1
2

K+lq2 = 1+2(s-H)w+p--
2

K+lq3 = (-1-2sw)(l-p-
2
-)

K+lSI = (-1+2sw)(l+p-
2
-)

K+lS2 = 1-2Hw(l +2(s -H)w) +p -2-(1 +2sw -4Hw)

K+lS3 =1-2(s-H)w-p-
2

K+l
r1 = 1+P-2-

2 2 K+l
r2 = -2 -4H w +4Hw P-2-

P = _11_
2J.Lw


