CHARACTERISTICS OF FLOW OVER PARABOLIC BROAD-CRESTED WEIR

M.A. Abourehim
Irrigation and Hydraulics Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.

ABSTRACT

A discharge measurement device using broad-crested weir with parabolic cross section provides wide measuring range without any effect on the head-discharge relationship by tail water up to high submergence ratio. The present work presents theoretical and experimental analyses for the characteristics of flow over such weir. The depth of flow over weir, the velocity coefficient C_{v}, the discharge coefficient C_{d}, and the brink depth are analysed theoretically via applying the energy equation. Theoretical relationships were developed. The submergence criterion and the water surface profile are experimentally investigated using weir model of various dimensions. The developed relationships are verified by the experimental measurements, and a good agreement was found to exist. Finally, a head-discharge relationship are presented in terms of mathematical formulas and charts.

NOMENCLATURE

Area of the flow cross section,
Area of critical flow cross section, Channel bed width, Discharge coefficient, Velocity coefficient, Head on weir crest,
Total head on weir, $\mathrm{H}_{\mathrm{o}}=\mathrm{H}+\frac{\alpha_{1} \mathrm{va}^{2}}{2 \mathrm{~g}}$,
The submergence head of tail water,
Length of weir crest, The parameter of the parabola, Discharge passing over weir, Initial submergence ratio corresponds to submergence starting effect
Top width of flow cross section, Top width of critical flow cross section, Velocity of the approaching flow, Velocity of flow at the brink section Velocity of flow over weir at the contracted section, Depth of flow over weir, Depth of flow at the brink section, Depth of critical flow,
$y_{c}=\left(\frac{27}{64} \cdot \frac{Q^{2}}{g P}\right)^{1 / 4}$
Depth of free flow over weir, Depth of submerged flow over weir,

$$
\begin{array}{ll}
\alpha_{1}, \alpha_{2} & \text { Energy correction coefficients } \\
\eta & \text { Coefficient of head loss. }
\end{array}
$$

$$
\eta
$$

1.INTRODUCTION

The determination of stream discharges has a great importance in the operation efficiency of many projects in; irrigation developments, water supply, river engineering hydrologic studies on experimental basins, and in many other practical situations. It is appropriate therefore, to re-evaluate the existing methods of flow measurement to improve their accuracies, and to develop new methods of better accuracies. Furthermore, the larger the number of methods available, the better is the chance for designers to select the most suitable method to their various applications.
Broad-crested weir referred to as critical depth meters, on which critical depth is assumed to be occurred. The parshall flume, rectangular, trapezoidal and triangular brood-crested weirs, and rectangular cutthroat measuring flume, are examples of flow measuring methods based on this principle [1,2,3,4,5,6,7,8,9,10,11]. Critical depth meter is solely valid for ideal flow in which the loss of flow energy is neglected. The assumption of ideal flow causes an error of about 10% in discharge prediction, [12]. Actually, a part of the approaching flow energy
is lost due to the lateral and vertical contractions through such structures, which makes the depth of flow to be less than the critical depth. For various dimensions of rectangular broad-crested weir, its found that the average values of flow depth over weir are 0.524 H and 0.485 H according to Minneseta, and Washington tests, respectively [13]. Also, the 0.524 H value is confirmed experimentally, and theoretically, while the critical depth was found equal to $0.67\left(\mathrm{C}_{\mathrm{v}}\right)^{4 / 3} \mathrm{H}$ [14], where, H is the head on the weir, and C_{v} is the velocity coefficient.

Figure 1. Flow over parabolic broad crested weir, (a) free flow condition, (b) submerged flow condition, (c) cross section.

Consequently, for accurate discharge measurementis the discharge equations should be based on the acm depth, and not on the critical depth assumption. Tur fact is taken into consideration while studying te parabolic broad-crested weir as a discharge measuriz device in the present work.
Parabolic broad-crested weir has a cross sectiond parabolic shape, and a broad-crested in the longitudite section as shown in Figure (1). The advantages of sui weir arise from its simplicity, and accuracy measuring small and large discharge specially narrow streams while the discharge is unaffected submergence up to more than the critical depth.
Parabolic weir can possess greater submergence tix rectangular section before the capacity is affected. \mathbb{T} is refereed to that, the critical depth for parabli section is 0.75 H , while it equals 0.67 Ht rectangular section. Furthermore the parabolic shapil more sensitive to small heads than rectangular sectif because $\mathrm{Q} \alpha \mathrm{H}^{2}$ in the former shape, while $\mathrm{Q} \alpha \mathrm{H}^{\mathrm{H}}$ in the later one.
The brink or the end depth, is the depth of flow: the end of the weir crest. The brink depth is considere one of the important characteristics since it affects ${ }^{2}$ design of stilling basin below the fall. In addition, may be used as measuring flow method of drops 2 waterfalls.
The end depth has been extensively investigated fit rectangular channels, and a list of references on th subject has been reported in [14]. Some investigations to a smaller extent, have been applied for trapezoit channels [15]. A little work has been done on the depth for circular channel [16, 17]. In contrast these, a very little work has been carried out on th brink depth for parabolic, and triangular sections.
Diskin [16] developed equations for the end depthft exponential channels with zero pressure assumption? the end section, giving a theoretical value of the brii depth for parabolic section equals 0.731 of the critie depth. Diskin's work was improved later Rajaratnam [18], who derived generalized equationst. exponential channels for non-zero pressure at the section. Rajaratnam and Muralidhar [19] presentel theoretical, and experimental studies for the depth exponential channels. The momentum theorem applied resulting an end depth equation depends ont value of the pressure value at the brink sectiin Experimentally, the brink depth ratio was found to 0.772 of the critical depth.

From the above discussion, it is clear that an accurate evaluation for the end depth of parabolic section is not reported. The only given value by Diskin, $\mathrm{y}_{\mathrm{b}}=0.731$ y_{c}, is not true because the pressure at the brink section has a certain value and not zero as assumed. The equation predicted by Rajaratnam does not give a definite value for the brink depth, since it depends on the value of the pressure coefficient which is not evaluated as yet either theoretically or experimentally for parabolic section.
The present study is intended to investigate the characteristics of the flow over parabolic broad-crested weir which have not been studied previously. The analysis aimed at predicting an accurate head-discharge relationship. The problem is investigated theoretically by applying the energy equation taking into account the loss of the flow energy. A comprehensive experimental study was conducted including free and submerged weir conditions.

2. THEORETICAL STUDY

2.1 The Depth Of Flow Over The Weir

Experiments showed tat the flow over parabolic weir is characterized by existing a contracted section for all values of L / H from 12 to 2.5 . Hence, the depth of flow over the weir is defined as the contracted depth as shown in Figure (1). The depth of flow, y, can be obtained by applying the energy equation at section $1-1$, where the head H is measured, and section 2-2 where the contraction of flow occurs. To get an accurate evaluation for the flow depth, the loss of energy h_{L} between the above two sections should be taken into account.
Equating the specific energy equations at section 1-1, and 2-2 considering the apex line as a datum we get;

$$
\begin{equation*}
H_{o}=y+\frac{\alpha_{2} v^{2}}{2 g}+h_{L} \tag{1}
\end{equation*}
$$

Substituting for $h_{L}=\eta \frac{\mathrm{v}^{2}}{2 g}$, equation (1) becomes;

$$
\begin{equation*}
\mathrm{H}_{\mathrm{o}}=\mathrm{y}+\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}\left(\alpha_{2}+\eta\right) \tag{2}
\end{equation*}
$$

where, $\quad H_{o}=H+\frac{\alpha_{1} \mathrm{v}_{\mathrm{a}}{ }^{2}}{2 \mathrm{~g}}$,
η - is the coefficient of head loss,
v_{a} - is the approaching flow velocity, $\mathrm{v}_{\mathrm{a}}=\frac{\mathrm{Q}}{\mathrm{A}_{1}}$,
A_{1} - is the flow cross section area at section 1-1.
Assuming $\alpha_{1}=\alpha_{2}=1.0$, and introducing the velocity coefficient C_{v} to account for the loss of energy, where $\mathrm{C}_{\mathrm{v}}=1 / \sqrt{1+\eta}$, in equation (2) yields;

$$
\begin{equation*}
\mathrm{H}_{\mathrm{o}}=\mathrm{y}+\frac{\mathrm{Q}^{2}}{2 \mathrm{gA}_{2}^{2} \mathrm{C}_{\mathrm{v}}^{2}} \tag{3}
\end{equation*}
$$

where, A_{2} is the flow cross section are at section 2-2 which is the area of parabola, $\mathrm{A}_{2}=\frac{2}{3} \mathrm{Ty}$, and T is the top width of flow.
The parabola's equation may be written as, $x^{2}=2 \mathrm{Py}$, where P is the parameter of the parabola.
Putting $\mathrm{x}=\frac{\mathrm{T}}{2}$ in the parabola's equation yields;
$\mathrm{T}^{2}=8 \mathrm{PY}$. Hence, $\mathrm{A}_{2}=\frac{4}{3} \mathrm{y} \sqrt{2 \mathrm{Py}}$, and $A_{c}=\frac{4}{3} y_{c} \sqrt{2 p y_{c}}$, where A_{c} and y_{c} are the cross section area and the depth of critical flow, respectively. The critical depth, y_{c} for parabolic section may expressed as;

$$
\begin{equation*}
\frac{Q^{2}}{g}=\frac{A_{c}^{3}}{T_{c}}=\frac{64}{27} P y_{c}^{4} \tag{4}
\end{equation*}
$$

Substituting for $\frac{Q^{2}}{g}$ from (4) in (3) we get;

$$
\begin{equation*}
y^{4}-H_{o} y^{3}+\frac{y_{c}^{4}}{3 C_{v}^{2}}=0 \tag{5}
\end{equation*}
$$

Equation (5) is a quartic equation for y. Using Ferrari's solution [20,21], Eq. (5) has the following four roots;

$$
\begin{equation*}
\mathrm{y}_{1}=\frac{\mathrm{H}_{\mathrm{o}}}{2}\left[0.5+\mathrm{M}-\left[(0.5+\mathrm{M})^{2}-4(\mathrm{~K}+\mathrm{N})\right]^{1 / 2}\right] \tag{6.a}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{y}_{2}=\frac{\mathrm{H}_{\mathrm{o}}}{2}\left[0.5+\mathrm{M}+\left[(0.5+\mathrm{M})^{2}-4(\mathrm{~K}+\mathrm{N})\right]^{1 / 2}\right], \tag{6.b}\\
& \mathrm{y}_{3}=\frac{\mathrm{H}_{\mathrm{o}}}{2}\left[0.5-\mathrm{M}+\left[(0.5-\mathrm{M})^{2}+4(\mathrm{~K}-\mathrm{N})\right]^{1 / 2}\right], \tag{6.c}\\
& \mathrm{y}_{4}=\frac{\mathrm{H}_{\mathrm{o}}}{2}\left[0.5-\mathrm{M}-\left[(0.5-\mathrm{M})^{2}+4(\mathrm{~K}-\mathrm{N})\right]^{1 / 2}\right], \tag{6.d}
\end{align*}
$$

where;

$$
\begin{gather*}
M=(2 K+0.25)^{1 / 2} \tag{7}\\
N=\left[K^{2}-\frac{1}{3 C_{v}^{2}}\left(\frac{y_{c}}{H_{o}}\right)^{4}\right]^{1 / 2} \tag{8}\\
K=-\frac{2}{3 C_{v}}\left(\frac{y_{c}}{H_{o}}\right)^{2} \operatorname{cosec} 2 \alpha \tag{9}\\
\tan \alpha=\left(\tan \beta_{1} / 2\right)^{1 / 3},|\alpha| \leq 45^{\circ} \tag{10}\\
\operatorname{Sin} \beta_{1}=-\frac{16}{9} \frac{1}{c_{v}}\left(\frac{y_{c}}{H_{o}}\right)^{2},|\beta| \leq 90^{\circ} \tag{11}
\end{gather*}
$$

Equation (6.d) gives a negative value for y, while Eqs. (6.a,b, and c) give positive values. In Eq. (6.b) $y_{2}>y_{c}$, while in Eqs (6.a and c) $y_{3}<y_{1}<y_{c}$.
Referring to Eq (11), the value of $\sin \beta_{1}$ ranges from 0 to ± 1 with two extreme limits; 0 and ± 1.
Substituting in Eq. (11) for the above critical limits we get;
(i) For $\sin \beta_{1}=0, \beta_{1}=0 \mathrm{C}_{\mathrm{v}}=\infty, \mathrm{y}_{2}=\mathrm{H}_{\mathrm{o}}$, and $y_{1}=y_{3}=y_{4}=0$.
(ii) For $\sin \beta_{1}= \pm 1, \beta_{1}= \pm \frac{\pi}{2}, \mathrm{c}_{\mathrm{v}}=\mp \frac{16}{9}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2}$, $y_{1}=y_{2}=0.75 \mathrm{H}_{\mathrm{o}}, \mathrm{y}_{3}=0.25 \mathrm{H}_{\mathrm{o}}$, and $y_{4}=-0.75 \mathrm{H}_{\mathrm{o}}$.

The analysis of the above values of the flow depth, y, indicates that, in the first case the flow is stagnant. In the later case, the depth of flow over the weir has two values; y_{1} represents the flow depth in case of free flow, and y_{2} is the flow depth in submerged weir condition. The value y_{3} rationally speaking can not express the depth of flow over weir, since it ranges
from 0 to $0.25 \mathrm{H}_{\mathrm{o}}$.
Consequently, the depth of flow over weir y_{1} axdy might be expressed by y_{f} and y_{s} referring to freem submerged weir conditions in forms;

$$
\begin{gathered}
\mathrm{y}_{\mathrm{f}}=\frac{\mathrm{H}_{\mathrm{o}}}{2}\left[0.5+\mathrm{M}-\left[(0.5+\mathrm{M})^{2}-4(\mathrm{~K}+\mathrm{N})\right]^{1 / 2}\right] \text {,and (12) } \\
\mathrm{y}_{\mathrm{s}}=\frac{\mathrm{H}_{\mathrm{o}}}{2}\left[0.5+\mathrm{M}+\left[(0.5+\mathrm{M})^{2}-4(\mathrm{~K}+\mathrm{N})\right]^{1 / 2}\right],
\end{gathered}
$$

2.2 The Velocity Coefficient

The velocity coefficient, C_{v}, is considered important parameter for studying the characteristiosi flow over the weir, since it expresses the energy lox Hence, the value of the coefficient C_{v} strongly affem the values of flow depth and discharge coefficientif weir. It is fruitful to derive a theoretical relationdic relates the velocity coefficient C_{v}, to the ratio $\mathrm{y}_{\mathrm{c}} / \mathrm{H}_{v}$
Referring to Eq. (11), the values of $\sin \beta_{1}$ and C_{v} ar plotted for different values of y_{c} / H_{o} and shownin Figure (2). According to Eq. (11) the extreme valus for the coefficient C_{v} may obtained from the followin two conditions;
(i) when $\sin \beta_{1}=0, \mathrm{C}_{\mathrm{v}}=\infty$, and
(ii) when $\sin \beta_{1}=-1, C_{v}=\frac{16}{9}\left(\frac{y_{c}}{H_{o}}\right)^{2}$.

Figure 2. Representation of $\sin \beta_{1}=-\frac{16}{9}\left(\frac{y_{c}}{H_{0}}\right)^{2} \frac{1}{\mathrm{C}_{1}}$

However, the coefficient C_{v} could not possess ractical values beyond unity. Hence, the limits of C_{v} tould be ranged from $\frac{16}{9}\left(\frac{y_{c}}{H_{o}}\right)^{2}$ to 1.0 as depicted in figure (3) Assuming an average value between the bove two limits, the coefficient C_{v} approximately may ptained as;

$$
\begin{equation*}
\mathrm{C}_{\mathrm{v}_{\text {avg }}}=0.5+\frac{8}{9}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2} \tag{14}
\end{equation*}
$$

Figure 3. Interpolation of $\sin \beta_{1}=\mathrm{f}\left(\mathrm{C}_{\mathrm{V}}\right)$.
Exact expression for C_{v} may developed by integrating Eq. (11) with respect to C_{v} from $C_{v}=\frac{16}{9}\left(\frac{y_{c}}{H_{o}}\right)^{2}$ to $c_{v}=1.0$ for constant values of $\frac{y_{c}}{H_{o}}$ varying from 0 to 0.75.
then,
$\int_{16}^{c_{v}=1.0}\left[-\frac{16}{9}\left(\frac{y_{c}}{H_{o}}\right)^{2} \frac{1}{\mathrm{c}_{\mathrm{v}}}\right] d C_{v}=\frac{16}{9}\left(\frac{y_{c}}{\mathrm{H}_{\mathrm{o}}}\right)^{2} \ln \frac{16}{9}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2}$ $c_{v}=\frac{16}{9}\left(\frac{y_{c}}{H_{o}}\right)^{2}$

Dividing Eq (15) by the difference
$\Delta C_{v}=1-\frac{16}{9}\left(\frac{y_{c}}{H_{o}}\right)^{2}$, and equating the product to the right hand side of equation (11), we get;

$$
\begin{equation*}
\mathrm{C}_{\mathrm{v}}=\frac{\frac{16}{9}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2}-1}{\ln \frac{16}{9}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2}}, \quad 0<\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}<0.75 \tag{16}
\end{equation*}
$$

Equation (16) is applicable when $0<\mathrm{y}_{\mathrm{c}} / \mathrm{H}_{\mathrm{o}}<0.75$. Plotting Eq (16) in Figure (4) indicates that for y_{c} / H_{o} ≥ 0.65, a linear relationship between C_{v} and y_{c} / H_{o} is exist and can be expressed as;

$$
\begin{equation*}
\mathrm{C}_{\mathrm{v}}=\frac{4}{3}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right) \tag{17}
\end{equation*}
$$

from which $\quad \mathrm{y}_{\mathrm{c}}=0.75 \mathrm{H}_{\mathrm{o}} \mathrm{C}_{\mathrm{v}}$

Figure 4. Relation $\mathrm{C}_{\mathrm{V}^{-}} \frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}$.

2.3 The Discharge Coefficient

Since the discharge coefficient C_{d} is mainly affected by the energy loss, it may correlate with the coefficient C_{v} as follows;
As shown in Appendix (1), the discharge equation for parabolic sharp crested weir takes the form;

$$
\begin{equation*}
\mathrm{Q}=\frac{\pi}{2} \mathrm{C}_{\mathrm{d}} \sqrt{\mathrm{gP}} \mathrm{H}_{\mathrm{o}}^{2} \tag{19}
\end{equation*}
$$

Referring to Eq (4) we get;

$$
\begin{equation*}
\mathrm{y}_{\mathrm{c}}^{4}=\frac{27}{64} \cdot \frac{\mathrm{Q}^{2}}{\mathrm{gP}} \tag{20}
\end{equation*}
$$

Substituting for Q from Eq (19) in $\mathrm{Eq}(20)$, yields;

$$
\begin{equation*}
C_{d}=\frac{16}{3 \sqrt{3} \pi}\left(\frac{y_{c}}{H_{o}}\right)^{2} \simeq 0.98\left(\frac{y_{c}}{H_{o}}\right)^{2} \tag{21}
\end{equation*}
$$

From Eqs. (16) and (21), a general relationship, correlates C_{v} and C_{d} may obtained

$$
\begin{equation*}
C_{v}=\frac{\frac{\sqrt{3}}{3} \pi C_{d}-1}{\ln \frac{\sqrt{3}}{3} \pi C_{d}}, \quad 0<C_{d}<\frac{\sqrt{3}}{\pi} \tag{22}
\end{equation*}
$$

Equations (22) limits the variation of C_{d} as, $0<\mathrm{C}_{\mathrm{d}}<\frac{\sqrt{3}}{3}$. However, as shown in Figure (5) a simple relationship between C_{v} and C_{d} may be developed for values of $\mathrm{C}_{\mathrm{v}} \geq 0.85$ by correlating Eqs. (17) and (21) as follows;

$$
\begin{equation*}
\mathrm{C}_{\mathrm{d}}=\frac{\sqrt{3}}{\pi} \mathrm{C}_{\mathrm{v}}^{2} \simeq 0.5511 \mathrm{C}_{\mathrm{v}}^{2} \tag{23}
\end{equation*}
$$

It is obvious from eqs. (21), (22) and (23), that C_{d} is independent on the parabola parameter P .

2.4 Depth -Discharge Relationship (rating curve relation)

It is obvious from the above analysis that, the depth of flow over free weir is less than the critical depth. Hence, the discharge equation based on the critical depth seems to be inaccurate. However, the direct measurement of the head on weir H , and the depth over the weir y gives precise evaluation for the discharge over the weir.
A direct relationship between y_{f} and y_{c} may obtained for free weir condition by substituting for y_{c} / H_{o} with values ranges from 0.65 to 0.75 in EqS (12) and (16). Then the corresponding values of y_{f} / H_{o} are calculated. The governing relationship between y_{c} / H_{o} and y_{f} / H_{o} in this case may written as;

$$
\begin{equation*}
\frac{y_{c}}{H_{o}}=0.92+0.427 \ln \left(\frac{y_{f}}{H_{o}}\right) \tag{24}
\end{equation*}
$$

Substituting for y_{c} from Eq (4) in Eq (24), yields;

$$
\mathrm{Q}=\left(1.12+0.53 \ln \frac{\mathrm{y}_{\mathrm{f}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2} \sqrt{\mathrm{gp}} \mathrm{H}_{\mathrm{o}}^{2}
$$

Equation (25) expresses the depth-dischap relationship for values of $0.56 \leq y_{c} / H_{o} \leq 0.75$.

Figure 5. Relation $C_{v}-C_{d}$.

2.5 Brink Depth

Diskin and Rajaratnam $[16,19]$ analysed the brine depth ratio, y_{b} / y_{c} using the momentum equation. The inaccurate evaluation of the pressure values at the brink section led to the discrepancy between the theoretial (0.731) and experimental (0.772) values of the brink depth ratio.
Evidently, in the previous studies, the energy equation was not employed to theoretically evaluate the brink depth. In this article, the end depth is analysed theoretically using the energy equation as follows.
Equating the specific energy equations at sections $2-2$, and $3-3$, and neglecting the loss of energy, yields,

$$
\begin{equation*}
y_{b}{ }^{4}-y_{o} y_{b}{ }^{3}+\frac{y_{c}^{4}}{3}=0 \tag{26}
\end{equation*}
$$

Solving Eq (28) using the same procedure applied before for Eq. (5), we get;

$$
\begin{equation*}
\sin \beta_{2}=-\frac{16}{9}\left(\frac{y_{c}}{y_{0}}\right)^{2} \tag{27}
\end{equation*}
$$

Substituting for $y_{o}=0.75 \sqrt{c_{v}} H_{0}$ in Eq. (29) gives;

$$
\operatorname{Sin} \beta_{2}=-\left(\frac{16}{9}\right)^{2} \frac{1}{c_{\mathrm{v}}}\left(\frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{H}_{\mathrm{o}}}\right)^{2} ;
$$

from which, for the Case of $\operatorname{Sin} \beta_{2}=-1$,

$$
\begin{equation*}
y_{b}=\frac{9}{16} \sqrt{c_{v}} H_{o} \tag{28}
\end{equation*}
$$

Dividing Eq (28) by Eq. (18), we obtain the brink depth ratio in the form

$$
\begin{equation*}
\frac{\mathrm{y}_{\mathrm{b}}}{\mathrm{y}_{\mathrm{c}}}=0.75 \sqrt{\frac{1}{\mathrm{c}_{\mathrm{v}}}} \tag{29}
\end{equation*}
$$

3. EXPERIMENTAL STUDY

In the present paper, the experimental study is intended to check the predicted equations for; depth of flow over the weir, y_{f} and y_{s}, the coefficients, C_{v} and C_{d}, the depth-discharge relationship, and the brink depth, y_{b}. Experiments were performed also, to investigate the water surface profile and the submergence criterion.

3.1 Experimental Arrangements

Experimental work was carried out in the laboratory of Irrigation and Hydraulics research, Faculty of Engineering, Alexandria University.
Experiments were conducted in two horizontal rectangular channels. The first has a 4.0 m length, 0.4 m height, and 0.185 m width. The second has 9.0 m length, 0.5 m height, and 0.395 m width. The channels are fabricated from, 8 mm perespex sheets supported by a steel frame.
Four wooden and coated models for the parabolic broad-crested weir were used in the experiments. The first has crest length, $\mathrm{L}=70 \mathrm{~cm}$ and parameter, $\mathrm{p}=$ 2.5 cm . The other three models having equal length, L $=60 \mathrm{~cm}$, and different parameters; $p=5.0,7.5$, and 10 cm . The first model was inserted in the first channel
with apex height, $\mathrm{d}=10.4 \mathrm{~cm}$ above the channel bottom. The other models were installed in the second channel with height, $\mathrm{d}=15.5 \mathrm{~cm}$ for each one.
Different discharges were allowed to pass over each weir model covering a range of L / H from 2.5 to 12 . For each discharge, the weir head, H , the depth of flow over the weir y , and the brink depth y_{b} were measured by point gauge. The discharges were measured by a v-notch weir. Submergence by tail water was controlled by adjusting a sliding gate at the end of each channel. All depths were measured with respect to the center line (apex line) of the weir.

3.2 Experimental Results

3.2.1 Flow Surface Profile

The flow depths were measured longitudinally along the center line of the weir at distances every 2.5 cm . The flow surface profile is plotted with respect to the ratio L/H as shown in Figure (6). In addition to the vertical contraction of flow caused by the weir hump, a lateral contraction accrued due to transition from channel rectangular section to the weir parabolic section. The vertical contraction affects the flow by creating a contracted section located at distance from the entrance increases as the discharge increases. Due to the lateral contraction, cross waves developed with symmetrical formation with respect to the weir center line. For values of $\mathrm{L} / \mathrm{H} \geq 8$, the intensity of waves increases and the flow behaves similar to the flow in long open channel. As the values of L / H decrease the waves intensity decreases to one wave when $\mathrm{L} / \mathrm{H} \leq$ 5.0. Further increase in the discharge causes gradual withdrawal for the wave towards the weir end, creating parallel flow when $\mathrm{L} / \mathrm{H} \leq 2.5$. For small values of the parabola parameter, P , parallel flow is expected to occur when $\mathrm{L} / \mathrm{H}<2,0$. It can conclude that the best condition for weir operation exists when $\mathrm{L} / \mathrm{H} \leq 5.0$.

3.2.2. Submergence flow condition

Submergence of flow occurs when the head-discharge relationship is affected by the downstream water level. It is important, in practice, to determine the downstream submerged head, $\mathrm{h}_{\mathrm{s}}{ }^{*}$, at which the discharge starts to be affected. Hence, to determine whether the weir is free or submerged. The criterion which governs this problem can be expressed by using
starting ratio, S^{*}, which is defined as, $S^{*}=100 \frac{\mathrm{~h}_{\mathrm{s}}{ }^{*}}{\mathrm{H}}$, in which h_{8}^{*} and H are the head downstream and upstream of the weir, with both related to the crest level.

Figure 7. Flow surface profile.
The submergence ratio S^{*} was investigated experimentally. The downstream water level was gradually raised by adjusting the end gate. The heads h_{s} and H were measured and recorded at the same time. The head h_{8} at which the head H begins to increase is considered the depth, $\mathrm{h}_{\mathrm{s}}{ }^{*}$. The head h_{s} was measured at section located at point far enough to avoid turbulence downstream the weir, and the effect of backwater created by the end gate. The experimental data are reported in Table (1). In Figure (7), the submergence ratio S^{*} is plotted versus the ratio H / L. From Figure (7) it can conclude that the average values of S^{*} is approximately 80% for values of $\mathrm{H} / \mathrm{L} \leq 0.4$. For values of $\mathrm{H} / \mathrm{L}>0.4$ the ratio S^{*} rapidly falls. Referring to Table (1), its is found that the ratio $h_{s}{ }^{*} / y_{c}$ has an average values equals to 1.15 . Consequently submergence criterion is governed by the following relationship;

$$
\mathrm{h}_{\mathrm{s}}<>1.15 \mathrm{y}_{\mathrm{c}}
$$

If $\mathrm{h}_{\mathrm{s}}<1.15 \mathrm{y}_{\mathrm{c}}$ the weir is free, and if $\mathrm{h}_{\mathrm{s}}>1.15 \mathrm{y}_{\mathrm{c}}$ the weir is considered submerged

Figure 8. Relation $S^{*}-H / L$.

4. RESULTS AND DISCUSSION

Results of more than 100 experimental runs were used to evaluate the accuracy of the developed equations for; the flow depth over the weir y_{f} or y_{s}, the velocity coefficient C_{v}, the discharge coefficient C_{d}, the depthdischarge relationship, and the brink depth y_{b}.

4.1. The Flow Depth Over The Weir

The total head on the weir, H_{o}, is calculated using the properties of the approaching flow in rectangular channel section at section 1-1, Figure (1). The values of the critical depth, y_{c} were calculated according to Eq (4). The values of the velocity coefficient were calculated using Eq (16). Hence, the ratio $\mathrm{y}_{\mathrm{c}} / \mathrm{H}_{o}$ and the value of c_{v} were used to calculated the depth of flow over the weir y_{f} or y_{s} corresponds to free or submerged flow conditions, respectively.

Table 1. Experimental data for the submergence ratio S^{*}, for $b=39.5$ and $L=60 \mathrm{~cm}$.

P. Cm.	Q, Usec.	y_{c} Cm.	H, Cm	$\mathrm{H}_{\mathbf{s}}{ }^{*}$ Cm	$\mathrm{S}^{*}=\frac{\mathrm{h}_{\mathrm{s}}{ }^{*}}{\mathrm{H}}$	$\mathrm{h}_{\mathrm{s}}{ }^{*} / \mathrm{y}_{\mathrm{c}}$
5.0	5.0	6.81	10.13	8.1	0.80	1.19
	10.0	9.63	14.22	11.3	0.795	1.17
	15.0	11.79	17.30	13.55	0.783	1.15
	20.0	13.62	19.90	15.8	0.794	1.16
	25.0	15.23	22.15	17.5	0.79	1.15
	30.0	16.68	24.2	19.1	0.789	1.15
	35.0	18.02	26.04	19.4	0.745	1.08
7.5	5.0	6.15	9.15	7.10	0.775	1.15
	10.0	8.70	12.70	9.9	0.78	1.14
	15.0	10.66	15.57	12.2	0.784	1.14
	20.0	12.31	17.94	14.05	0.783	1.14
	25.0	13.76	19.90	15.8	0.794	1.15
	30.0	15.07	21.66	17.4	0.803	1.16
	35.0	16.28	23.50	18.5	0.787	1.14
10.0	3.74	4.95	7.37	6.0	0.814	1.21
	6.88	6.72	9.92	7.9	0.796	1.17
	9.85	8.04	11.8	9.54	0.808	1.19
	13.37	9.36	13.65	11.05	0.81	1.18
	16.0	10.24	14.9	12.0	0.805	1.17
	19.25	11.24	16.35	13.0	0.795	1.15
	22.44	12.13	17.50	14.10	0.806	1.16

For the free condition, the depth y_{f} was evaluated according to Eq (12) using the system of Equations, Eq. (7) to Eq (11). The calculated values of y_{f} were compared to the measuring ones as shown in Table (2). The comparison indicates good agreement with maximum deviation of 5%. However, in most of the cases, the calculated values are higher than the measured ones. This may be referred to the effect of lateral contraction caused by the transition from channel rectangular section to the weir parabolic section. The effect of lateral contraction mainly depends on the flow top width T with respect to the constant width of channel b. Consequently, the calculated and the measured values are getting closer when T increases either by increasing discharges or the parabola parameter P .
As to submerged flow condition, verification of Eq (13) showed good agreement between measured and calculated values of the submerged flow depth, y_{s}, with deviation does not exceed 6% as shown in Table (3).

4.2. The Velocity Coefficient, C_{v}

The experimental values of the velocity coefficient were obtained by substituting for the measured values
of H_{o}, and y_{f} in Eq (5) in the form;

$$
C_{V}=\frac{y_{c}^{2}}{\sqrt{3} y_{f}^{3 / 2} \sqrt{H_{o}-y_{f}}}
$$

The theoretical values of C_{v} were calculated via applying Eq (16). As shown in Table (2), the experimental, and theoretical values of C_{v} are in good agreement with maximum relative difference in the range of 3.4%.
The experimental data for free flow condition showed that the ratio y_{c} / H is always higher than 0.65 . Hence, eq (17) is preferable to be used instead of Eq (16) because of its simplicity.

4.3. The Discharge Coeffient, C_{d}

The measured values of Q , and H_{o} were used in Eq (19) to obtain the experimental values of the coefficient C_{d}. As reported in Table (2), the theoretical values of C_{d} obtained by Eq (23) are very close to the experimental ones with maximum deviation of 0.5%.
The experimental values of C_{d} are plotted against the ratio $\mathrm{H} / \mathrm{4}$ as shown in Figure (8). It is clear that for
the same values of the parabola parameter, $\mathrm{P}, \mathrm{C}_{\mathrm{d}}$ increases as H / L increases. However some negligible variation of C_{d} values was found for various values of p for the same value of H / L, e.g., for $H / L=0.238$ the maximum difference in C_{d} values was found equals to, $C_{d}=0.446$, and 0.45 for $p=5.0$, and 10 cm , respectively. This difference gives a deviation of 1% with respect to their average values. This result ensures that the coefficient of discharge C_{d} is independent on the parabola parameter p . The higher values of C_{d} corresponds to $p=10 \mathrm{~cm}$ may be related to the effect of the lateral contraction, where the top width T becomes closer to the channel width, b, especially in the models having the same apex height, d. For values of $\mathrm{H} / \mathrm{L}>0.2$, the average experimental value of the coefficient C_{d} was found equal to 0.459 , while the theoretical value equals 0.5511 for ideal flow condition ($\mathrm{C}_{\mathrm{v}}=1.0$).

Figure 9. Relation $C_{d}-H / L$ for various values of p.

4.4. The depth-Discharge Relationship

The measured values of H, and y_{f} were used to calculate the discharge according to Eq (25). The calculated discharges are compared to the measured ones as shown in Figure (9). The comparison shows good agreement with deviation not to exceed 5%.
On the other hand, the average value of the ratio y_{c} / H was found equals to 0.69 for a range of $\mathrm{L} / \mathrm{H} \leq$
5.0. Making use of this value, an empirical equation for the discharge may be written in the form:

$$
\begin{gathered}
\mathrm{Q}=0.7335 \sqrt{\mathrm{gp}} \mathrm{H}^{2}, \\
\mathrm{Q}=2.30 \sqrt{\mathrm{p}} \mathrm{H}^{2},
\end{gathered}
$$

where, in eq (31), Q is in $\mathrm{m}^{3} / \mathrm{sec} . \mathrm{p}$ and H are in meters

Figure 10. Verification of Eq. (25).

4.5. The Brink Depth

As for the brink depth $y_{b}, E q$ (29) was checked. The coefficient C_{v} was computed using Eq. (16). The calculated values of y_{b} were compared to the measured values. As shown in Table (2), a good agreement exiss with a maximum deviation of 6%. On the other hand, the average measured value of the brink depth ratio is found to be 0.773 , which is in complete agreement to the value given by Rajaratnam [19].

5. CONCLUSION

An extensive theoretical and experimental studies ars presented for the characteristics of the flow over parabolic broad-crested weir. On the basis of theer studies it can be concluded that a broad-crested weir oi parabolic cross section may be use as a new accurat device to measure stream discharges.

Table 2. Experimental measurements and verification of theoretical
Equations of, y_{f}, C_{v}, C_{d} and y_{b} in case of free flow.

No	Q,	H,	values of C_{v}			values of $y_{f}, \mathrm{~cm}$			values of C_{d}			values of $y_{b}, \mathrm{~cm}$		
	ℓ / sec.	cm	Exp.	Theo. Eq. (10)	\% dev.	meas.	Cal., Eq (12)	\% dev.	Exp.	Theo., Eq (23)	\% dev.	meas.	cal. Eq (29)	\% dev.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
$\mathrm{p}=2.5 \mathrm{~cm}, \mathrm{~d}=10.4 \mathrm{~cm}, \mathrm{~L}=70 \mathrm{~cm}$, and $\mathrm{b}=18.5 \mathrm{~cm}$														
1	0.46	3.67	0.898	0.889	-1.0	2.11	2.14	1.4	0.434	0.436	0.5	1.91	1.94	1.6
2	1.13	5.75	0.91	0.894	-1.8	3.30	3.37	2.0	0.44	0.44	0.0	2.95	3.05	3.4
3	2.18	7.9	0.916	0.90	-1.7	4.60	4.7	2.0	0.446	0.446	0.0	4.15	4.22	1.7
4	4.34	11.05	0.913	0.907	-0.6	6.60	6.65	0.8	0.453	0.453	0.0	5.9	5.94	0.7
5	6.35	13.35	0.92	0.907	-1.4	8.25	8.0	-3.0	0.451	0.453	0.4	7.0	7.31	4.4
6	8.71	15.38	0.903	0.917	+1.6	9.70	9.47	-2.40	0.463	0.463	0.0	8.04	8.37	4.1
7	10.98	17.2	0.895	0.919	+2.6	11.05	10.64	-3.7	0.464	0.465	0.1	9.4	9.39	0.0
8	13.12	18.75	0.92	0.92	0.0	12.0	11.62	-3.2	0.465	0.466	0.2	10.2	10.26	0.6
9	15.06	20.0	0.924	0.921	-0.3	12.88	12.48	-3.1	0.466	0.467	0.2	11.0	10.98	0.0
10	16.95	21.17	0.926	0.921	-0.5	13.69	13.23	-3.4	0.467	0.467	0.0	11.35	11.65	2.6
$\mathrm{p}=5.0 \mathrm{~cm}, \mathrm{~d}=15.5 \mathrm{~cm}, \mathrm{~L}=60 \mathrm{~cm}$, and $\mathrm{b}=39.5 \mathrm{~cm}$														
1	2.09	6.60	0.922	0.891	-3.4	3.70	3.86	4.3	0.436	0.438	0.5	3.45	3.5	1.4
2	4.10	9.22	0.914	0.893	-2.3	5.24	5.41	3.2	0.437	0.439	0.5	4.67	4.89	4.7
3	6.06	11.06	0.937	0.904	-3.3	6.30	6.58	4.4	0.448	0.45	0.5	5.7	5.91	3.7
4	8.09	12.78	0.933	0.903	-3.2	7.32	7.61	4.0	0.448	0.449	0.2	6.62	6.83	3.2
5	10.03	14.25	0.935	0.902	-3.5	8.12	8.49	4.6	0.446	0.448	0.5	7.28	7.62	4.7
6	12.03	15.50	0.94	0.907	-3.5	8.90	9.31	4.6	0.452	0.453	0.2	7.95	8.32	4.7
7	14.02	16.68	0.942	0.909	-3.5	9.62	10.09	4.9	0.455	0.455	0.0	8.54	8.97	5.0
8	16.0	17.80	0.94	0.909	-3.3	10.32	10.77	4.4	0.455	0.455	0.0	9.1	9.58	5.3
9	18.06	18.95	0.935	0.908	-2.8	11.0	11.41	3.7	0.453	0.454	0.2	9.7	10.19	5.1
10	20.18	19.95	0.94	0.911	-3.1	11.60	12.07	4.0	0.456	0.457	0.2	10.25	10.75	4.9
11	21.86	20.72	0.935	0.912	-2.4	12.2	12.57	3.0	0.457	0.458	0.2	10.8	11.18	3.50
12	24.23	21.76	0.942	0.913	-3.0	12.75	13.26	4.0	0.459	0.459	0.0	11.4	11.77	3.2
13	26.26	22.63	0.944	0.914	-3.2	13.25	13.83	4.4	0.459	0.46	0.2	11.9	12.24	2.9
14	28.22	23.50	0.933	0.912	-2.3	13.9	14.28	2.7	0.458	0.458	0.0	12.62	12.7	0.6
15	30.2	24.3	0.935	0.912	-2.40	14.35	14.78	3.0	0.458	0.458	0.0	13.50	13.14	-2.7
16	32.05	24.96	0.931	0.914	-1.8	14.9	15.27	2.5	0.46	0.46	0.0	13.8	13.25	-2.0
17	34.25	25.73	0.938	0.917	-2.3	15.3	15.8	3.3	0.462	0.463	0.2	-	-	-
18	36.55	26.52	0.938	0.919	-2.0	15.85	16.33	3.0	0.463	0.465	0.4	-	-	-
$\mathrm{p}=7.5 \mathrm{~cm}, \mathrm{~d}=15.5 \mathrm{~cm}, \mathrm{~L}=60 \mathrm{~cm}$, and $\mathrm{b}=39.5 \mathrm{~cm}$														
1	2.06	5.95	0.895	0.886	-1.0	3.41	3.46	1.5	0.431	0.433	0.5	3.10	3.14	1.3
2	4.10	8.35	0.915	0.890	-2.7	4.72	4.89	3.6	0.435	0.437	0.5	4.35	4.43	1.8
3	6.06	10.10	0.924	0.894	-1.4	5.71	5.92	3.7	0.439	0.44	0.2	5.35	5.37	0.4
4	8.14	11.6	0.927	0.902	-2.7	6.67	6.91	3.6	0.446	0.448	0.2	5.88	6.20	5.4
5	10.12	12.94	0.925	0.90	-2.7	7.45	7.70	3.4	0.446	0.446	0.0	6.54	6.92	5.8
6	12.13	14.04	0.934	0.908	-2.8	8.15	8.45	3.7	0.453	0.454	0.2	7.14	7.54	5.6
7	14.13	15.20	0.927	0.906	-2.3	8.84	9.13	3.3	0.450	0.452	0.4	7.69	8.15	6.0
8	16.08	16.11	0.929	0.909	-2.2	9.49	9.76	2.8	0.455	0.455	0.0	8.25	8.68	5.2
9	18.19	17.12	0.925	0.911	-1.5	10.15	10.36	2.0	0.455	0.457	0.4	9.20	9.22	0.2
10	20.04	17.90	0.923	0.913	-2.0	10.60	10.91	2.9	0.458	0.459	0.2	9.85	9.67	-1.8
11	22:00	18.76	0.928	0.912	-1.7	11.15	11.40	2.2	0.457	0.458	0.2	10.7	10.14	-5.2
12	24.74	19.64	0.91	0.907	-0.3	11.85	11.92	0.6	0.453	0.453	0.0	11.15	10.63	4.7
13	26.10	20.34	0.912	0.911	0.0	12.40	12.41	0.0	0.456	0.457	0.2	11.55	11.05	-4.3
14	28.06	21.00	0.915	0.917	0.2	12.95	12.90	-0.4	0.464	0.463	-0.2	11.84	11.40	-3.7
15	30.17	21.75	0.914	0.919	0.6	13.50	13.40	-0.75	0.464	0.465	0.2	12.30	11.82	-3.9
16	32.05	22.45	0.917	0.917	0.0	13.8	13.81	0.0	0.462	0.463	0.2	12.69	12.2	-3.9
17	33.69	22.93	0.917	0.92	0.3	14.23	14.14	-0.60	0.465	0.466	0.2	13.13	12.49	-4.9
18	36.16	23.75	0.916	0.92	0.4	14.75	14.66	-0.6	0.465	0.466	0.2	13.6	12.94	-4.9
19	38.14	24.50	0.908	0.914	0.7	15.2	15.05	-1.0	0.460	0.46	0.0	14.09	13.33	-5.4

Table 2. Continue

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
$p=10.0 \mathrm{~cm}, \mathrm{~d}=15.5 \mathrm{~cm}, \mathrm{~L}=60 \mathrm{~cm}$, and $\mathrm{b}=39.5 \mathrm{~cm}$														
1	2.02	5.48	0.884	0.888	0.5	3.2	3.19	-0.3	0.432	0.434	0.5	2.83	2.90	2.5
2	4.04	7.70	0.919	0.893	-2.8	4.36	4.52	3.7	0.437	0.439	0.5	3.95	4.09	3.5
3	6.06	9.35	0.925	0.893	-2.8	5.34	5.54	3.75	0.443	0.445	0.5	4.8	4.98	2.7
4	8.09	10.76	0.926	0.902	-2.6	6.2	6.41	3.4	0.446	0.448	0.5	5.45	5.75	5.5
5	10.12	11.96	0.933	0.907	-2.8	6.92	7.19	3.9	0.452	0.453	0.2	6.07	6.42	5.8
6	12.03	13.0	0.93	0.908	-2.4	7.60	7.83	3.0	0.453	0.454	0.2	6.61	6.99	5.7
7	14.13	14.04	0.928	0.911	-1.8	8.3	8.51	2.50	0.456	0.457	0.2	7.13	7.56	6.0
8	16.08	14.94	0.927	0.912	-1.6	8.90	9.07	1.9	0.457	0.458	0.2	7.65	8.07	5.5
9	18.06	15.80	0.924	0.913	-1.2	9.48	9.63	1.6	0.458	0.459	0.2	8.33	8.54	2.5
10	20.04	16.57	0.93	0.917	-1.4	9.96	10.16	2.0	0.462	0.463	0.2	8.84	8.98	1.6
11	22.0	17.44	0.916	0.912	-0.4	10.55	10.61	0.6	0.457	0.458	0.2	9.55	9.43	-1.3
12	23.98	18.12	0.916	0.916	0.0	11.10	11.11	0.0	0.461	0.462	0.2	10.03	9.83	-2.0
13	26.03	18.8	0.919	0.918	-0.1	11.57	11.58	0.0	0.464	0.464	0.0	10.5	10.22	-2.7
14	28.06	19.50	0.914	0.919	0.50	12.12	12.02	-0.8	0.464	0.465	0.2	10.81	10.61	-1.9
15	30.27	20.2	0.916	0.92	0.40	12.60	12.51	-0.7	0.460	0.466	0.0	11.05	11.02	-0.3

As a result of the above theoretical study a group of simple experimentally verified relationships were developed, and could be employed in the following:
1- Estimation of the flow depth over the weir in free, and submerged flow condition: Eqs. (12), and (13).
2. Determination of the velocity coefficient in terms of the critical depth related to the total head on weir; Eqs (16), and (17).
3. Determination of the discharge coefficient with respect to the velocity coefficient; Eqs (22) and (23).
4. Prediction of the weir discharge as function of the head on the weir H , and the depth of free flow over weir y_{f}; Eq. (25)
5. Evaluation of the brink depth with respect to the critical depth; Eq (29).
According to the experimental study, we can conclude the following:

1. The best condition for the weir operation exists when $\mathrm{L} / \mathrm{H} \leq 5.0$.
2. The weir can be operated without any effect by tail water on the discharge up to submergence ratio equals 80%, while $\mathrm{H} / \mathrm{L} \leq 0.4$. The weir is considered free if $\mathrm{h}_{\mathrm{s}} / \mathrm{y}_{\mathrm{c}} \leq 1.15$.
3. The discharge coefficient is independent on the parabola parameter, and has an average value of 0.459 for $\mathrm{L} / \mathrm{H} \leq 5.0$.
4. The measured brink depth ratio has an average value of 0.773 of the critical depth. Finally, Equation (31) is recommended to be practically applied for measuring discharges over
broad-crested weir since, one only measuring parameter is needed, which is the head on the weir H .

REFERENCES

[1] A.J.M. Harrison, "The Streamlined Broad-Crested Weir", proc. of the Institute of Civil Engineers, London, England, pp. 7028, December, 1967.
[2] R.L. Parshall, "The Improved Venturi Flume". Transactions, $A S C E$, vol. 89, 1926.
[3] G.V. Skogerboe and M.L. HyaH, "Rectangular Cutthroat Flow measuring Flumes"., J. of the Irrigation and Drainage Div., ASCE, vol. 93, No. IR 4, pp 1-13, December, 1967.
[4] C.D. Smith, "Open Channel water Measurement With Broad-Crested Weir" Annual Bulletin of the International Commission on Irrigation and Drainage, New Delhi, India, 1958.
[5] P. Ackers, W.R. White, J.A. Perkins, and A.J.M. Harrison, Weirs and Flumes for Flow measurement, John Wiley and sons New York, N.Y., 1978.
[6] C.D. Smith, and W.S. Liang, "Triangular BroadCrested Weir" J. of the Irrigation and Drainage Div., ASCE, vol. 95, IR 4, pp. 493-502, December, 1969.
[7] Wubbo Boiten and Remmet, H. Pitlo. "TheShaped Broad-Crested Weir" J. of the Irrigation and Drainage Div, $A S C E$, vol. 108, No. IR2, pp. 142-160, June, 1982.

Table 3. Verification of Eq. (13) for calculating the flow depth, y_{8} in submerged flow condition.

No.	$\begin{aligned} & \hline \mathrm{Q}, \\ & \mathrm{\ell} / \mathrm{sec} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H}, \\ & \mathrm{Cm} \end{aligned}$	values of $y_{s}, \mathrm{~cm}$		
			meas.	cal., Eq(13)	\% dev.
$\mathrm{p}=2.5 \mathrm{~cm}, \mathrm{~d}=10.4 \mathrm{~cm}, \mathrm{~L}=70 \mathrm{~cm}$, and $\mathrm{b}=18.5 \mathrm{~cm}$					
1	1.13	6.50	5.68	5.97	5.10
2	2.18	8.20	6.91	7.29	5.5
3	4.34	12.73	11.10	11.72	5.6
4	6.57	15.0	13.09	13.67	4.4
5	8.71	17.25	14.98	15.77	5.3
6	10.98	19.65	17.35	18.07	4.2
7	13.12	21.15	18.55	19.42	4.7
$\mathrm{p}=5.0 \mathrm{~cm}, \mathrm{~d}=15.5 \mathrm{~cm}, \mathrm{~L}=60 \mathrm{~cm}$, and $\mathrm{b}=39.5 \mathrm{~cm}$					
1	2.09	7.54	6.62	6.94	4.8
2	5.00	11.64	10.19	10.7	5.0
3	6.06	12.9	11.25	11.91	5.9
4	8.09	14.22	12.21	12.94	6.0
5	10.03	16.24	14.47	14.93	3.2
6	12.03	17.25	14.86	15.69	5.6
7	14.02	19.9	17.8	18.45	3.7
8	15.96	20.74	18.3	19.10	4.4
9	18.06	22.9	20.8	21.31	2.5
10	20.18	23.38	20.70	21.59	4.3
11	21.86	24.35	21.56	22.51	4.4
12	24.26	25.1	21.96	23.07	5.0
13	26.26	27.9	26.0	26.03	0.0
14	28.22	28.60	26.30	26.66	1.4
$\mathrm{p}=7.5 \mathrm{~cm}, \mathrm{~d}=15.5 \mathrm{~cm}, \mathrm{~L}=60 \mathrm{~cm}$, and $\mathrm{b}=39.5 \mathrm{~cm}$					
1	2.01	6.2	5.27	5.57	5.7
2	4.04	9.63	8.52	8.89	4.3
3	5.05	10.60	9.4	9.78	4.0
4	8.0	13.64	12.24	12.63	3.2
5	9.76	14.60	12.70	13.43	5.75
6	12.13	15.65	13.50	14.24	5.5
7	14.02	18.0	16.30	16.7	2.5
8	16.32	18.85	16.75	17.37	3.7
9	18.06	20.80	19.2	19.37	0.9
10	20.04	24.45	19.75	19.93	0.9
11	22.06	22.15	20.4	20.52	0.6
12	24.38	22.9	20.8	21.11	1.5
13	26.10	23.86	21.95	22.04	0.4
14	28.06	24.4	22.45	22.47	0.0
$\mathrm{p}=10.0 \mathrm{~cm}, \mathrm{~d}=15.5 \mathrm{~cm}, \mathrm{~L}=60 \mathrm{~cm}$, and $\mathrm{b}=39.5 \mathrm{~cm}$					
1	2.02	6.60	6.06	6.15	1.5
2	4.10	8.92	7.9	8.23	4.2
3	6.12	10.12	8.60	9.11	5.9
4	8.25	12.30	10.66	11.28	5.8
5	10.12	13.30	11.45	12.10	5.7
6	12.23	15.2	13.74	13.96	3.1
7	14.24	16.0	14.06	14.66	4.3
8	15.96	17.12	15.21	15.74	3.5
9	18.19	18.40	16.45	16.96	3.1
10	20.18	19.11	17.0	17.55	3.2
11	22.44	19.75	17.50	18.03	3.0

[8] H. Rouse, Fluid Mechanics For Hydraulic Engineers, McGraw-Hill Book Company, New York, 1938, pp. 319-321.
[9] J.R.D. Francis, and P. Minton, Civil Engineering Hydraulics, London, 1986, pp. 285287.
[10] R.H. French, Open Channel Hydraulic, McGraw-Hil Book Company, New York, Toronto, 1986, pp. 336-342.
[11] F.M. Henderson, Open Channel Flow, The Macmillan Company, New York, London, 1970, pp. 210-213.
[12] A.J. Clemmens, M.G. Bos, and J.A. Replole. "Contraction Ratios For Weir And Flume Designes" J. of the Irrigation and Drainage Div., ASCE, vol. 113, No. 3, pp. 420-424 August 1987.
[13] H.A. Doering sfeld, C.L. Barker, "PressureMomentum theory applied to the Broad-Crested Weir" Transaction of the ASCE, vol. 106, paper No. 2177, pp. 943-969, 1941.
[14] M.A. Abourehim, "Depths of Flow Over Rectangular Broad-Crested Weir", Alex. Eng. J. vol. 30, No. 2, pp. C 55- C 62, April, 1991.
[15] J.K. Robert, and S.F. Soon, "Flow Measurement With Trapezoidal Free overfall" J. of the Irrigation and Drainage Division ASCE, vol. 115, No 1, pp. 125-137, February, 1989.
[16] M.H. Diskin, "End Depth At A Drop In Trapezoidal Channels", J. of Hy. Div., ASCE, vol. 87, No. Hy. 4, pp. 11-32, July, 1961.
[17] C.D. Smith, "Brink Depth For Circular Channel", J. of Hy. Div, ASCE, vol. 88, No Hy 6, pp. 125-134, November, 1962.
[18] N. Rajaratnam, Discussion of "The End Depth at a Drop in Trapezoidal Channels" by M.H. Diskin, J. of the Hy. Div, ASCE, vol, 88, No Hy 1, proc. paper 3044, pp. 119-130, January, 1962.
[19] N. Rajartnam, and D. Nuralidhar, "End Depth For Exponential Channels" J. of the Irrigation and Drainage Div, ASCE, vol. 90, No IR 1, pp. 17-39, March, 1964.
[20] A.G. Tsypkin, and G.G. Tsypkin, Mathematical

Formallas; algebra, geometry, and mathematical analysis, Mir publishers, Moscow, 1988.
[21] G.A. Korn, and T.M. Korn, Mathematical Handbook for Scientist and Engineers, McGrawHill Book Company, New York, London
[22] B.B. Necrasof, Reference Book in Hydraulics, Higher Schook, Minsk, 1985, pp. 173.

Appendix 1

Discharge Coefficient for sharp crested parabolic weir ${ }^{1}$

Figure 10. Parabolic sharp crested weir.

Considering a strip of flow with width T , and thickness dh lies at a depth h from the flow surface as shown in Figure (10).
The elementary area of strip $\mathrm{dA}=\mathrm{T} . \mathrm{dh}$, and the theoretical velocity, $v=\sqrt{2 \mathrm{gh}}$. Hence,

$$
\begin{equation*}
\mathrm{Q}=\int_{\mathrm{o}}^{\mathrm{H}} \mathrm{C}_{\mathrm{d}} \mathrm{~T} \sqrt{2 \mathrm{gh}} \mathrm{dh} . \tag{1}
\end{equation*}
$$

From the equation of parabolu, $\mathrm{T}^{2}=8 \mathrm{py}$, where $\mathrm{y}=\mathrm{H}-\mathrm{h}$, then

$$
\begin{equation*}
\mathrm{T}=2 \sqrt{2 \mathrm{p}(\mathrm{H}-\mathrm{h})} . \tag{2}
\end{equation*}
$$

Substituting for T in Equation (1), yields;

$$
\begin{equation*}
\mathrm{Q}=4 \mathrm{C}_{\mathrm{d}} \sqrt{\mathrm{gp}} \int_{\mathrm{o}}^{\mathrm{H}} \sqrt{\mathrm{~h}(\mathrm{H}-\mathrm{h})} \mathrm{dh} . \tag{3}
\end{equation*}
$$

[^0]Equation (3) can be written in the form:

$$
\begin{equation*}
Q=4 C_{d} \sqrt{g p} \int_{0}^{H} \sqrt{\frac{H^{2}}{4}-\left(h-\frac{H}{2}\right)^{2}} d h . \tag{4}
\end{equation*}
$$

$$
\mathrm{Q}=4 \mathrm{C}_{\mathrm{d}} \sqrt{\mathrm{gp}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sqrt{\frac{\mathrm{H}^{2}}{4}-\frac{\mathrm{H}^{2}}{4} \sin \theta \cdot} \frac{\mathrm{H}}{2} \cos \theta \mathrm{~d} \theta,(5)
$$

from which
In Equation (4) put $\mathrm{h}-\frac{\mathrm{H}}{2}=\frac{\mathrm{H}}{2} \sin \theta$ and differentiate yields,

$$
\begin{equation*}
\mathrm{dh}=\frac{\mathrm{H}}{2} \operatorname{Cos} \theta \mathrm{~d} \theta, \tag{7}
\end{equation*}
$$

for $\mathrm{h}=\mathrm{H}, \quad \frac{\mathrm{H}}{2} \sin \theta=\frac{\mathrm{H}}{2}$ and $\theta=\frac{\pi}{2}$,

$$
\begin{equation*}
\text { for } \mathrm{h}=0, \quad \sin \theta=-1 \text { and } \theta=-\frac{\pi}{2} \tag{8}
\end{equation*}
$$

and $Q=8 C_{d} \sqrt{g p} \cdot \frac{H^{2}}{4} \int_{0}^{\pi / 2} \frac{1}{2}(1+\operatorname{Cos} 2 \theta) d \theta$, (7)
thenQ $=8 C_{d} \sqrt{g p} \cdot \frac{H^{2}}{4} \frac{1}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}$,
Substituting for the above values in (4), we get;

$$
\begin{equation*}
\mathrm{Q}=4 \mathrm{C}_{\mathrm{d}} \sqrt{\mathrm{gp}} \frac{\mathrm{H}^{2}}{4} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta \tag{6}
\end{equation*}
$$

and finally $\quad Q=\frac{\pi}{2} C_{d} \sqrt{g p} H^{2}$.

[^0]: ${ }^{1}$ Derivation steps are explicitly given to prove the inaccurate equation (11.9) listed in Reference [22], p. 173.

