
Hussien Hassan Ali
Alexandria University, Faculty of Engineering,
Computers and Automatic Control Department.

We present a statistical pattern matching algorithm for text that can utilize the knowledge of the
probabilitydistribution of the alphabetic characters in the text under consideration. The algorithm has a
pre-processing phase of time complexity on the worst case of order m log m - where m is the length of
thepattern - and has a searching phase that on the average does not examine every character in the target
text(Le.sublinear). We develop an upper bound for the number of comparisons in the average case and
showthat the number of comparisons for this algorithm is less than or equal that of the Boyer-Moore
algorithm.

Theproblem of text pattern matching is an old
well-knownproblem which can be summarized as:
Givena string of characters S and another target string
ofcharactersT, we need to detect the occurrence(s) of
~inthe target T. The algorithms used to solve this
~roblemare used heavily in information systems for
automaticindexing and text categorization tasks, word
processors,and all text processing applications. The
availabilityof large amounts of text material in modern
informationsystems and the still unsatisfactory results
ofquerymethods that depend on index terms [1], [2]
leadto a demand for practical and efficient algorithms
forpatternmatching.
Thereare many algorithms in the literature that deal

withthis problem, for a detailed survey see [3], and
[4]. However, two algorithms seem to be the most
efficient[4]:The algorithm presented in [5] and the
algorithmpresented in [6]. Throughout this paper, these
Iwoalgorithms will be referred to as KMP
(Knuth-Morris-Pratt) and BM (Boyer-Moore)
respectively.Both algorithms use the same basic idea .
ofutilizingthe knowledge of the pattern S to enhance
iliesearching process and both have the same
worst-casecomplexity O(n) and a pre-processing time
ofO(m),where n is the length of the target T and m is
ilielength of the pattern string S. However, they
assumenothing about the target text T and do not
utilizeany information about it.
Withmodern information systems and the availability

ofwhole text documents in a machine-processable

format, a new horizon for text processing is opened.
For example, the statistical properties of the characters,
words, and other components of the text can be easily
calculated and used to enhance the performance of the
various operations [7], [8], [9]. In this paper, we
propose an algorithm that uses the knowledge of the
pattern S and the probability distribution of the
characters in the target string T to further enhance the
expected number of character comparisons.

The rest of the paper is organized as follows: In
section 2, the background and some details of the KMP
and BM algorithms are discussed in order to set the
stage for the new algorithm. The new statistical
algorithm is presented in section 3. The complexity and
performance of the new algorithm together with a
comparison with other algorithms is presented in
section 4. The conclusion is given in section 5 and then
the references are given.

Suppose we have the string pattern S = s1 S:2 ••. sm'
and the text string T = t1t2 ... ~; where n ~ m. The
most straightforward way to find whether the pattern S
occurs in the text T can be summarized as follows:

1- The characters in S are compared against the
corresponding characters in T.

2- If a mismatch occurs, shift the string S to the
right by one position (Le. after the first shift, s1
will correspond to ~) and repeat the two steps

until either the string 5 is found or the enq of the
string T is reached. '

This method is slow and it needs O(mn) character
comparisons in the worst case. Notice that each
character of T may be processed more than once (up to
m times).

[5] proposed an algorithm (KMP) which is linear and
needs only Oem+ n) comparisons. The basic idea is to
construct a deterministic finite state automaton using
the pattern 5. Then the characters of T are processed
one at a time from left-to-right. The machine will enter
an accepting state if it recognizes the pattern 5. The
machine is constructed such that it 'remembers' the
longest head of 5 that matches with the recent
processed characters of T. Whenever a mismatch
occurs, the pattern 5 is shifted to the right (possibly
more than one position) such that the next character of
T will be compared with the appropriate character of
5. However, it has to inspect all the characters of T
until a match is found or the end of T is reached. 50,
effectively, the KMP algorithm skips to the next
character of T each time whether a match or mismatch
occurs and does not reprocess any already processed
characters. The construction of the deterministic finite
state automaton is done in a preprocessing phase and
needs Oem) operations.

The BM algorithm [6] has basically the same idea as
the KMP algorithm but allows skipping by more than
one character when a mismatch occurs. This is done by
comparing the characters of 5 against the
corresponding characters of T in right-to-left order
while the pattern 5 is shifted to the right. The
comparison starts from the last character sm' then sm-i,
... and so on. When a mismatch occurs, the pattern 5
is shifted to the right by an appropriate amount (up to
m) and the comparison starts again from sm' The
choice to start comparison from right-to-left, in
contrast with the KMP method, gives the major gain of
performance of BM algorithm over the KMP
algorithm. For example, when a mismatching occurs
and it is found that the character just read from T does
not belong to 5 at all, the pattern 5 can be shifted to
the right m positions. 50, on the average, the BM
algorithm does not have to inspect all the characters in
T. Again, a preprocessing operation of Oem) is
required in order to calculate the appropriate skip
distances.

fun'
In this algorithm we utilize the knowledge of text

probability distribution of the characters within the n i
T to minimize the expected number of comparisons, In
discussed in the background section, the ind
algorithm always skips to the next character ch~
whether a match or a mismatch occurs. On the ch9
hand, the BM algorithm may skip greater distance ind
to m) if a mismatch occurs. 50 the idea is to utilize s'
knowledge of some statistical properties of the alph di
characters in T and 5 to maximize the two follo~of
factors: ~

gi
st
th

1- The expected number of mismatching that can
during the search process.

2- The expected skip-distance value taken whet w
mismatch occurs. e'

The first factor can be maximized by consid'
characters in 5 with the smallest probability
occurrence in T. We start the matching operation~
a character in 5 having the lowest probability and'
matching occurs, then we continue with the chara
having the next larger probability and so on,
second factor can be maximized by choosing
sequence of characters in the pattern 5 in the mate' a
operation to be near to the right end of 5 and
included as a substring in the rest of 5. These
requirements may be conflicting in general, si~
characters with small probability need not be near
right end of 5.

Now, suppose that the probability distrihu'
function p(.) of the alphabet characters is known,
general idea is to construct a cost function, using
pattern string 5, that represents the expectl
skip-distance for each character position in 5 and
into account the effect of both factors above. B

optimizing this function with respect to the chara'
positions, the position which makes the fun'
maximum will produce the minimum expected num
of character comparisons.

Assume that there is a one to one mapping frOt
alphabet character set A onto the set of integ~
I=[l,IAIJ, and let 7 be a random variable wh
values are drawn from the set 1. For convenience,
will say the value of t is the character corresponding
the integer value in I, since these values are in one
one correspondence. The probability distributi~

· ;

ALl: a Statistical Text Pattern Matching Algorithm

functionof r is the same as p(.). We will consider the
textT= tltz ... tn as a realization of the sequence of
nidenticalindependent random variables 1"1 1"2 ••• rn'

Inreality, these random variables are not totally
independent.For example, in the English language, the
character'q' will most probably be followed by the
character 'u' . However, the assumption of
independencewill keep the computations reasonably
simple.Otherwise, we will have to compute the joint
distributionsof every different sequence of characters
oflengthless than m.
Letdj(r) be a function of the random variable r that

givestheskip-distance (number of positions the pattern
stringS is shifted to the right) when comparing r with
iliecharacter si in S. ~(r) is also a random variable
withinteger values in the range [0, m]. So the
expectedvalue of di(r) is given by summing over all
iliecharacterst in the alphabet. Le.

Soduringthe search, at each step we could seek the
positionsi (from the remaining characters of S) which
makethe above expected skip-distance maximum. In
otherwords, the objective cost function will be :

= Maxi(L di(r = t)p(t»
tEA

In order to compute the function 0 we have to
calculatedi(r=t) for each i and for each character in
thealphabet.One approach, suggest using a technique
similarto that one used in the pre-processing phase of
KMP algorithm or,BM algorithm. For example, the
BM algorithm provides two heuristic functions called
's·pointer incrementing functions" to calculate the
maximumpossible increment. These two functions are
definedusing a similar tinite state automaton (as in
KMP method) that recognize the suffix substrings of S.
However,this approach assumes that the searching
processproceeds sequentially starting from the chosen
characteruntil a mismatch occur or the whole S string
is scanned successfully. Apparently this approach
cannotbe applied directly to our method since we may
startfrom any position within the string S and it is not

necessary that the characters in S are ordered in the
way that makes 0 optimum.

Conceptually, there'is no difference at all between
comparing two strings (character-wise) in the order of
their characters and comparing them in any other order
as long as we preserve the correspondence between the
characters. With this in mind, we can map the original
pattern string S into a new one S' so that the order of
characters in S' will represent the expected
skip-distances in increasing order. Le., the first
character (from left) in S' will correspond to the
character in the position i of S which yields the
minimum expected skip-distance and the last character
in S' will correspond to the character position iIi S
which yields the maximum skip-distance. Having done
this, we can apply a similar procedure as the one in
BM to compute the skip-distances. Of course,
searching the text string T will be modified to consider
the new relative positions of the corresponding
characters.

Although conceptually correct, the above mapping
will make the computation of di(r=t) practically
unmanageable with combinatorial explosion. The value
of di(r=t) depends on the relative position with other
characters in S. Since we do not know yet the mapping
from S to S', we will not be able to calculate the
skip-distance. In other words, in order to construct the
finite state automata to determine the skip-distances,
we have to have a fixed pre-known character order.
This means that we have to try every possible sequence
of characters of S (all mapping functions from S onto
S') which is m! in order to determine the optimal
arrangement.

To get around this problem, a sub optimal
skip-distance will be searched for. Instead of
computing di(r=t) with a tinite state automata that
'remembers' all the current matched characters so far,
we will decide how much to shift the string S based
only on the current position and the character just read
from the text T (the realization of r). This way, we can
use the original pattern string S to compute the skip
distances efficiently and then construct the mapping
function to create S'. The computation of di(r=t) based
on the current position is relatively easy and can be
carried out in O(m) operations as shown next.

In the remainder of this section, we formally present
the above ideas and the proposed algorithm. The
algorithm consists of two phases: The preprocessing

phase and the searching phase. In the pre-processing
phase, the skip-distance and the (, function are
computed and the necessary data structure is created.
The input to this phase is just the pattern string S. The
searching phase uses the resulting data structure from
pre-processing and the text string T to locate the
pattern inside T.

The pre-processing phase is responsible for creating
the correct data structure that will be used in the
matching process. The main task is to calculate the
skip distances di(r=t) for all values of i and 1. Suppose
that when comparing t with si a mismatch occurred.
Then the pattern S can be shifted to the right so that to
align the character t with the first occurrence Sj = t to
the left of si' Le. j is the greatest non-negative integer
less than i such that Sj = t. So the skip distance in this
case is (i-j).

Let A be the alphabet character set. Given the pattern
string S = St&], ••• sm' the following procedure
-written in a Pascal-like pseudo code- will construct the
matrix D[i, t] whose element di t represents the
skip-distance that must be taken whtm comparing the
character at the ith position (s) with a character t from
T. The dimension of the matrix D is mx IA I.

procedure calculate-skip-distance-matrix
begin {Initialization:}

D[i, t] := 0 for all i and t €A
i := 1;
while i ~ m do {Mark the positions:}
begin D[i, si] : = i;

i:= i + 1
end;
for all t€ A do {Calculate the skip distances:}
begin value: = 0; j := I;

whilej ~ m do
begin if DU,t].cO then DU,t]:= 0, value:= j

else if value .c 0 then DU,t]: = j-value
else DU, t] : = j;

j:=j+1
end

end
end.

Suppose that A = {a,b,c,d} and S = " bccabc'
the output matrix of the procedure 'calculate·
distance-matrix' will be as follows. Notice e
columns are corresponding to the characters in A pr
the rows are corresponding to the characters inS O.
we use the characters in S themselves instead of ;
indices for convenience. b'

m
o

a
b 1
c 2
c 3
a 0
b I
c 2

Suppose that A = {a,b,c,d} and S = "bcabdc' s
the output matrix of the proce~
,calculate-skip-distance-matrix' will be as follows:

a b c d
b 1 0 1 1
c 2 1 0 2
a 0 2 1 3
b I 0 2 4
d 2 1 3 0
c 3 2 0 1

Now we have to compute the expected skip-distar.
to consider the probability distribution of the chara
in A. The following procedure is a ~~
implementation to do this. The input is an array
(holds the probability of each character in A) an~
previously computed skip-distance matrix D[i, t].
output of the procedure is the array vO which hol~l
expected skip-distances corresponding to each char
in S.
procedure compute-expected-skip-distance-vector
begin

for i = 1 to m do
begin veil := 0;

, for all t€A do veil: = veil + p[t]*D[i,t]
end

end

ALl: a Statistical Text Pattern Matching Alg:~rithm

Considerthe skip-distance matrices calculated in
examplesI and 2 above and suppose that the
probabilitydistribution of {a,b,c,d} is {0.1, 0.2, 0.4,
OJ) respectively. Then the expected skip-distance
vectorof S = "bccabc" is [0.8, 1.0,1.6, 2.1, 2.4,
2.2] and the expected skip-distance vector of S = "
bcabdc"is [0.8, 1.0, 1.7, 2"Q, 1.6, 1.0]. The
maximumexpected distances are underlined and
occurredat positions 5 for the string S = "bccabc" and
atposition4 for the string S = " bcabdc".
Havingcomputed the expected skip-distances, we can

oecideabout the sequence of which the characters in
~willbe matched against the text T. To fully utilize
ourknowledge about the skip distances we can do the
matchingsequence in the order of decreasing values of
ilieexpected skip-distances. This will require sorting
ilieexpectedskip-distance vector v[]. Let us define
Ihematching sequence (or M-sequence) to denote the
!equenceof indices of the characters in S in the same
orderas they will be matched against the text T.

Consider the calculated expected distances in
Example3 for S = "bccabc" which are[0.8,1.0,1.6,
2.1, 2.1, 2.2]. After sorting, the new vector is [2.4,
l.2, 2.1, 1.6, 1.0, 0.8] yielding the M-sequence [5, 6,
4,3,2, I]. i.e. the matching operation will start with
Ihe5th character of S "b" then the eh character "c"
andso on.
Supposethat this sorting operation is done and we

getthe M-sequence. We can modify the skip matrix
D[i,t]to further increase the skip distances by taking
intoconsideration the knowledge of previously matched
characters.For 'example, consider Example 4 above
andsuppose that during the comparison, the character
'b' in the sth position is already matched but the next
position(character "c" in 6th position) is mismatched
withan "a" character. Now according to the element
06,a in the corresponding matrix D (Example 1), we
shouldshift the string S by 2 positions, but we can
actuallyimprove this distance if we recognize that the
previouslymatched "b" (at the 5th position) should
move4 positions in order to align with the first "b" in
~.Sothe final step in the pre-processing is to improve
ihematrix D.
Thefollowing procedure modifies the matrix D to

improvethe skip-distances. The inputs to the procedure

are the original D matrix and the M-sequence. The
output is a modified matrix D' such that d'i,t ~ di,t for
all i and t. The improvement is done in two steps:
• The forward improvement in which we keep track

of the' iargest skip distance of all the characters
already matched and

• The backward improvement in which the right-most
occurrences of the different characters in S are
checked. If all characters to the right of this
occurrence are matched and the distance to the right
end is larger than the recorded distance then the
larger is recorded instead.

In the following procedure, a temporary Boolean
array "R[O.. m]" is used to mark the right-most
occurrences of the different characters in S.

procedure irnprove-skip-distance-matrix
begin
{Initialize the temporary array and mark the next same
char occurrence to the left}

for i := 0 to m do R[i] := false;
for i := m down to 2 do R[m-D[m,sj]] := true;

{ Start backward improvement }
k := M-sequence[m];
for i := m down to 2 do
begin
j: = M-seq\jence[i];
if j ~ k and R[j] then

begin for all (t tA) ~ Sj do if (m-j) ~ DO,t]
, then DO, t] := (m-j + 1);

k:= j
end

end;
{ Start jOlWard improvement }

{Initialize skip by the distance between the pf char in
M-sequence and its left similar character}

j :=M-sequence[I];
if j > I then skip := DO-I, Sj]+ 1 else skip := 1;
for i=2 to m do
begin

j: = M-sequence[i]
for all (t tA) ~ Sj do if skip> DO, t]

then DO,t] : = skip;
if j > 1 and skip :=;;: D[j-l,s) then skip: =

D[j-l,sj] + 1;
{Update skip for next iteration}

end
end;

,-
Applying the above procedure to the matriX: D' in

Example 1 and with the resultant M-sequence [5; 6,4,
3, 2, 1] from Example 4, we get the following new
matrix D6:

a b c d
b 4 0 4 6
c 4 4 0 6
c 440 6
a 044 6
b 102 6
c 440 6

Notice that this matrix dictates that after successfully
matching the first character in the M-sequence, which
is the "b" in the 5th position of S, any mismatching
will cause skipping by at least 4 positions. In fact this
is the optimal skip-distance since the substring "bc" is
both in the head and the tail of the pattern S =
"bccabc" .

Now we are ready for the searching phase. The input
to this phase is the M-sequence, the improved
skip-distance matrix D, the target text string T and the
pattern string S. The output will be a pointer "found"
indicating whether the pattern S is a substring of T or
not. If the pattern is not in T, the value of "found" will
be zero, otherwise, its value will be the position of the
first occurrence in T. The following procedure is an
implementation of that searching phase:

procedure search-target-text
begin
r:= 0;
i := 1;
found := 0;
while (r ::;;n-m and found = 0) do

begin
k := M-sequence[i];
if ~ + k = sk then i: = i+ 1{Matching: increment i}
else begin r: = r + D[k, ~+k];

i:= 1 {Mismatching: skip and reset i}
end

if i > m then found := r + 1
end

end;

{ Pointer to target text T}
{ Pointer (0 M-sequence elements)

4. COMPLEXITY AND
ANALYSIS

The time complexity of the pre-processing phase
O(m log m) in the worst case since the complexity Ave. J

each component is as follows:
1- procedure calculate-skip-distance:

The initialization takes IA I.m constant steps,
marking stage takes m constant steps, and theI
stage of calculation takes IA I.m constant ste~Ave.
Since IA I is constant, the total complexity of tnl
procedure is Oem). PI P2(

2- procedure compute-expected-skip-distance-vector
The time complexity of this procedure is IAI. then
Le. Oem).

3- Sorting the elements in the expected skip-distan
vector is of Oem log m).

4- procedure improve-skip-distance-matrix:
• The initialization takes 2m constant steps, Ave.= PI• The backward improvement takes IA I.m constar

steps in the worst case, = PI• The forward improvement takes IA I.m constar= p
steps. = p

So, the total time complexity of the procedure S; I
Oem) in the worst case.

The calculation of the time complexity of ~ J
searching procedure is a little bit more complicat~
specially in the worst case. The while loop, controlllFro
by the variable r, has an inner loop which A
controlled by the variable i. r is incremented when ve
mismatch occur and at the same time, i is reset toI
The exit from the loop is either when i = m or wh
r > n-m. The worst case occurs when r is alwaj
incremented by a small value (e.g. 1) relative to[
while i is always approaching m before resetting .. w~
the construction of the D[] matrix usually maximizl
both the probability of mismatching (and hence, raliW

iteli) and the skip distances of the odd characters that nw
be near the left end of S through the backwar:mn
improvement (and hence, r is incremented by fu
maximum allowable distance). So, both two conditio <1
for worst case can not exist together.

However the average case is relatively easy
10

calculate. Let ~i be the average skip distance wh. Kl
th

the character si mismatch with a character from T, all W

let Pi = pes), the probability of the character Sj' W 21
will calculate the average number of iterations insi s
the while loop by multiplying the average number
times the variable i is incremented and the avera!

numberof times the variable r is incremented as
follows:

Ave.# of iterations = Ave. # of increments of i x
Ave. # of increments of r

Ave,# of increments of
r = (n-m)/ Ave. skip distance (1)

Ave.skipdistance = (1- PI) ~I +PI(l-P2) ~2 +

Ave.# of increments of r ~ (n-m)/ (l-PI) ~I (2)

Ave.# of increments of i
=PI(l-P~+ 2 PIP2(l-P3)+ ... +(m-l)PIP2 ... (l-Pm)

+ mPIP2'''Pm
=PI- PIP2 + 2PIP2 - 2PIP2P3 + ... + mPIP2,,,Pm
=PI + PIP2 + PIP2P3 + ... + PIP2,,,Pm
=PI + Pl(P2 +P2P3 + '" +P2P3"'Pm)
~ Pl+Pl(P2+P3+"'+Pm)
~ PI+PI(l-PI)
~ 2PI (3)

From(2) and (3) above,
Average# of iterations inside the while loop

Forsmall values of PI the # of iterations inside the
whileloop will be small, and approaches the best case
~hic~is equal to m. For larger values of PI> the # of
IteratIOnsapproach the worst case which is equal to
mn.

Thep~e-processing phase of this algorithm is of O(m
log m) In contrast to the pre-processing phases of both
KMP and BM algorithms which are of O(m). However
the~ei~a relatively large constant - in all algorithms -
whichIS IA I. SO, for practical values of m less than
ZIAI, the statistical algorithm's pre-processing is of the
samecomplexity as the other two algorithms.
Theaverage number of character comparisons during

thesearching phase in the statistical algorithm is less

than or equal to that of the BM algorithm. This can be
seen from the inequality (4), since the statistical

algorithm maximizes ~I and minimizes PI' On the

other hand, the BM algorithm is chancy in the sense
that it may perform good if the last character in S (sm)
happens to have a, low probability and good
skip-distance. In general, the statistical algorithm will
outperform, on the average, both the BM and KMP
algorithms when there are some characters with low
probability (such as 'q' in the English text).

The availability of large amounts of text material in
modern information systems and the still unsatisfactory
results of query methods that depend on index terms
and other text processing applications lead to a demand
for a practical and efficient algorithms for pattern
matching. We present a statistical pattern matching
algorithm for text that can utilize the knowledge of the
probability distribution of the alphabetic characters in
the text under consideration. The algorithm is
essentially a modification of the KMP algorithm and
the BM algorithm. The algorithm has a pre-processing
phase of time complexity in the worst case of order m
log m - where m is the length of the pattern - and has
a searching phase that on the average does not examine
every character in the target text (sublinear). We show
that the number of comparisons is in general less than
or equal to the number of comparisons in the BM
algorithm and the performance is boosted when the
pattern contains characters with low probability of
occurrence.

Experimental studies are needed to assert the given
result and to show the actual gain over other methods
in different language environment such as English and
Arabic. Also, the possibility of implementing the
algorithm as special hardware element is now
considered.

6. REFERENCES
[1] Su, Louise T. "An Investigation to Find

appropriate measures for evaluating interactive
information retrieval" , Ph.D. Rutgers State
University, 1991.

[2] Ekmekcioglu, F.C., Robertson, A.M. & Willett
P. "Effectiveness of query expansion in
ranked-output document retrieval systems". J.
Information Science, No. 18, 1992.

[3] Standish, T.A. Data Structure Techniques.
Addison-Wesley, 1980.

[4] Faloutsos, Christos "Access Methods for Text",
ComputingSurveys, VoLl7, No.1 March 1985.

[5] Knuth, D.E., Morris,J.H.&Pratt,V.R. "Fast
Pattern Matching in Strings". SIAM J. Computer
Vol.6, No.2, June 1977.

[6] Boyer, R.S. & Moore, 1,S. "A Fast String
Searching Algorithm", CACM, Vo1.20, No. 10,
Oct. 1977.

[7] Yannakoudakis, E.J. & Angelidakis, G.
insight into the entropy and redundancy of
english dictionary" IEEE Trans on Pa:
Analysis and Machine Intelligence, Vol. 10, I

p:960-970, Nov 1988.u
[8] Johansson, S. & Hofland, K. Frequency An,

of English vocabulary and grammer, Vol. I
Clarendon Press - Oxfored, 1989 (reprint 1

[9] M. Mrayati "Statistical Studies in
linguistic" . In Computers and the AT
Language; P. Mackey (00) HemispherePubli S
Corporation, 1990.

