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Analysis of unsteady compressible flow plays an important role in design and performance prediction
in manydiverse engineering applications. The generated flow fields in most cases involve strong pressure
discontinuities, high temperature differences between gas layers and entropy interfaces. Two first order
schemesof the modified method of characteristics and three recently developed finite difference schemes,
are applied to the one dimensional, frictional and heat transferring gas flow problem. Comparison is made
with a shock tube problem, rightly considered as a test tube for flow prediction procedures. The test tube
has an analytical solution as well as experimental measurements for comparison and evaluation of friction
and heat transfer effects. The earliest and most widely used modified scheme of characteristics [5] is
shownto be inadequate to cope with flow discontinuities. The overall implication of analysis of results,
proves that the first order scheme, which is based on physical interpretation of the characteristics
numerically, have very good ability to deal with discontinuities, showing low computer time as well as
simple coding. Despite the accuracy of higher order schemes, they produce non-physical oscillations
which should be meditated using artificial damping procedures.

Goodprogress has been made in the field of unsteady
compressible flow applications in the last three
decades. This is credited, in essential part, to the
developmentof numerical techniques suitable to handle
the complex unsteady flow problems. Unsteady flow
problemsin which there are large amplitude variations
in theflow properties occur in such applications such
asthrustaugmenting pulse ejectors, pulsed combustors,
pressure exchangers, inlet and exhaust piping of
internalcombustion engines, propagation of explosion
and detonation waves ... etc.
The flow fields in such applications always develop

pressure, temperature and entropy discontinuities. In
addition, to temperature differences between gas
layers, or the addition of fluid of non-uniform entropy
to the duct in which unsteady flow occurring, waves
overtaking each other into shock waves also persist.
Friction and heat transfer also add to the change of
entropy along particle path lines. For example,
unsteady flow in the exhaust pipe of supercharged
I.C.E. reported by [1] and flow in pulsed combustor

by [2], the temperature differences between gas layers
of exhaust gas and fresh charge may exceed 1000 °C
and pressure ratios may be more than 4.

The finite difference approach may be divided into
two categories. In the first, the method of
characteristics in which the finite difference
approximations are derived using the properties of
characteristic directions which have real slopes if the
system of differential equations is hyperbolic. In the
second category, which for the purpose of the present
work shall be called straight forward finite difference
terms replace partial derivatives with little
premanipulation of the equations.

The one dimensional unsteady gas flow requires the
use of special techniques to solve the describing
hyperbolic partial system of differential equations. The
flow properties at each point of the flow field depend
on those properties in finite region of upstream flow
and independent of properties downstream. Hence, a
characteristic concept is defined as the path of physical
disturbance and the partial D.E. can be reduced into



total derivatives along characteristics [3]. Practical,.
unsteady flow calculations in supercharging I.C.E.
came into use more than 30 years ago by Jenny [4].
These hand calculations are extremely tedious and time
consuming. The first application of computer using
numerical technique to solve the unsteady flow
problem is reported by Benson [5,6]. It is a tirst order
scheme modifying the method of characteristics to suit
coding by computer. The method has been widely
used and can cope with friction and heat transfer by
modifying the homentropic solution. However, the
present study shows that the method fails to handle the
presence of discontinuities. Spalding [7] introduced a
tirst order discretization scheme based on physical
interpretation in the integration of the differential
equations along characteristics in hybrid method.
Marzouk [8] applied the tirst order technique of
characteristics to pulse ejector problem without taking
heat transfer and friction into account and pulse
pressure ratio was low.

Recent stage of development is represented by
application of straight forward finite difference
methods, by expanding equations in Taylor series with
respect to time and replacing time derivatives by space
derivatives approximated by central, forward and
backward differences. Lax [9] introduced a first order
accurate finite difference explicit scheme. The work by
[10] is a study to compare some numerical methods to
guide specialists to choose the appropriate scheme.
However, this work was based on shock free flow
without friction and heat transfer effects. Also the
order of discretization of the higher order schemes also
changed at the boundaries which makes this
comparison inadequate. Morsy [11] applied Lax-
Windroff second order scheme [13] to study the
behaviour of pressure waves in variable area ducts.
The order of discretization also changed at boundaries
and the wave pressure ratio is low such that the flow
is basically homentropic.

The present study gives researchers the opportunity
to select appropriate technique when the unsteady flow
field develops strong discontinuities. Five numerical
techniques are tested. Comparison is made with a
shock tube problem, rightly considered as a "test tube"
for unsteady compressible tlow prediction procedures.
This allows the generation of as strong shock waves as
required and high temperature differences between gas
layers of non-homentropic flow. The problem has an

. analytical solution [15] and experimental measurements
for comparison and evaluation of friction and heat
transfer effects.

The one dimensional unsteady viscous and heat
transferring flow is described by the system of
differential equations of mass, momentum and energy,
in constant area pipe. It is represented vectorially with
right hand side includes perturbation terms of friction
and heat transfer [14,15]
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Since the gas pressure and temperature are far from the
critical values, the state and caloric equations take the
form.

Equations (1), (2) and (3) are used to reduce the
system of conservation laws as follows:
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represents the friCtion force per unit volume and

4pCpu(f w - T)
q =St d

presents the heat transfer per unit volume per unit
time.

The values of friction coefticient and Stanton number
Cf and St are estimated from boundary layer theory or
may be taken as functions of non-dimensional
parameters like Reynolds number.

1. THE MODIFIED METHOD OF
CHARACTERISTICS OF BENSON [5,6]:

The method of characteristics is based on the
transformation of the non linear PDE into ordinary
differential equations along characteristic curves. The
conservation equations (1), may be written as follows
in the dependent variables p,p and u, along the
characteristics.

~~ ±pa ~~ -(y -1)(q +ut) ± af=O along ~~ =u±a (5)

and

dp _a2 dp _ ()' -1)(q +ut) =0 along dx =u (6)
dt dt . dt

where

a= J;
Benson [5,6] introduced a tirst order numerical
techniquemodifying the hand calculation procedure by
[4]. It employs a rectangular grid in space and time.
The solution is obtained at each node of the gird by
integrating the equations along the two Reimann
characteristics and the particle path line
homentropically and then adding friction, heat transfer
andentropy modifying terms.
If aA represents sonic speed at entropy level SA of a

reference pressure, the change in
Reimann variables and entropy level, A, fJ and aA
(taken as main dependent variables), are obtained
through tinite differences along the characteristics
havingslopes

dx dx-=u±a -=u'
dt ' dt

dA,d~=d(a± y-1u)=a daA+ (y-l)2(Q+uf)dh (y-l).!dt
2 aA 2pa 2 p (7)

along A, fJ characteristics and,

daA = ()' -1) (q +ut) (8)
aA 2pa2

along particle path.
Equation (7) and (8) are integrated along the respective
characteristics to obtain the difference equations and
march the solution provided that the condition of
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In this method, it is considered that the change in
Reimann variables and entropy along their relevant
characteristics, is solely due to friction and heat
transfer ,Le. the tlow is non-homentropic from the
point of view of entropy change along the path
line.This is not the case when the flow field generates
shock waves, temperature and entropy discontinuities
where the reimann variables A , fJ vary along their
relevant characteristics due to change of entropy level
across such discontinuities. For problems with low
pressure ratio, such as those studied by [4,6], the
entropy discontinuity has minor effects on the solution.
However, for high pressure ratios , they would be
highly influential. This is the basic reason for failure of
this procedure to cope with the discontinuity when it is
applied, in the present study , to even an adiabatic
frictionless shock tube problem with pressure ratio of
10 and initial uniform temperature.

2. THE MOD I FIE D MET HOD 0 F
CHARACTERISTICS OF SPAI."DING [7]

This modified version is a first order technique that
combines the use of characteristics with rectangular
grid. Though the following characteristic equations can
be shown to be the same as (7), (8), they are presented
in the new dependent variables p,u and s to
demonstrate the difficulties that must be encountered in
dealing with discontinuities. For concise presentation
the dependent variables are taken as
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P=(P) 'Y , U=-'-u, a=exp(-'-s)
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The term Pda in the last equation does not vanish for a
discontinuity along Reimann variable characteristics.
The problem is that the dependent variables are not
known in advance to set a solution so that an iterative
procedure may be applied. Based on physical
interpretation of a shock tube flow. the pressure in the
integral is shown to be equal to the new pressure level
PI [7]. The subscripts M,N and R denote crossing
points of the reimann and path lines characteristics
from point I at the new time level as shown in figure
(1).
Hence the solution is obtained in explicit form as:

2 +FSI~t
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Subscripts MI , NI and SI denote average values over
the relevant characteristics. The method is also stable
provided that

~< 1
~x-I u I + a

~t < 1
~x - I u I + a

MI.NI.RI Characteristics conyeyina
inlormation of tluia rrom "'.N.R.

This is an explicit tirst order method . It is well
known for its large dissipation error . It is used to
show clearly the main features of a first order accurate
scheme. The method takes the following form with
reference to equation (4).

WD+
I_ S(WD WD At[ ° 0] J ° ° ]!1i -. i+1+ i-I - Ax Fi+I-Fj-l + A'lSi+1 + Si-I ) (14)

The method is stable provided that the following
condition is satisfied:

Figure 1. Illustration of the method of computation for
the moditied method of characteristics.

4- THE SINGLE STEP LAXWENDROFF SCHEME
[12]

This is a second order scheme both in time and
space, Le, the truncation errors are O(~r2 , ~2).It is
generated by developing eq.(4) into a Taylor', series



with respect to time and replacing the time derivatives
by space derivatives approximated by central
differences . The method takes the following form:
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1 1 2.:.\X 1+11-1 14.:.\X

[(F I n F I n)(F n n) I n Inn ni+! + i i+l -Fi -(F i +F i-l)(Fi -Fi-l)]

where F' is the Jacobian matrix and is defined as :
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The method is stable provided that the courant-
Friedrich-Iewy condition is satisfied as follows:

.:.\t ~ 1
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The explicit MacCormack scheme is second order
accurate in space and in time . It has a predictor-
corrector explicit algorithm as follows:

The two step process consists of evaluating derivatives
by one-sided differences taken in opposite directions
during alternate steps for symmetric calculations. The
first equation calculates a temporary predicted values
of W and F vectors. The corrector equation provides

the final value at the time level n + 1. The method is
stable provided that the product q II Amax II < 1, where
q = iltl Llx and Amax is the maximum eigenvalue in the
Jacobian matrix F'

The shock tube problem as shown in Fig. (2) is
investigated and two cases are considered
Case 1: A tube of pressure ratio 10 across the
diaphragm and uniform initial temperature excluding
the effect of friction and heat transfer is considered.
This case is compared with the analytical solution [16]
to basically distinguish the performance characteristics
of each numerical scheme.
Case 2: A tube of pressure ratio 9.8 and uniform initial
temperature with 1 3/8 inch inner diameter. This tube
is so selected in order to compare with the available
experimental results [17]. The problem is solved
analytically and numerically with and without the
friction and heat transfer effects. For both cases the
tube length is selected such that no interaction between
the schemes and the boundary conditions is
accomplished and thus all schemes maintain their order
of discretization. Based on properties predicted for the
adiabatic frictionless flow field, fixed average values of
the friction factor and Stanton number are taken to be
0.00175 and 0.00125 respectively .

Computations were carried out using five coded
computer programs written in C language on an IBM
personal computer. The results of case 1 after .5 ms
are presented in Figures (3) to (6) in which the
numerical solution without friction and heat transfer, is
compared with the analytical frictionless adiabatic
solution.

Figure (3) represents the results of the moditied
characteristics according to Spalding. The corners at
the end points of the rarefaction waves are rounded.
This may be attributed to the interpolation that must be
used with any numerical technique. The constant state
between the contact discontinuity and the shock wave
is fully realized. There is a slight deviation from the
analytical solution in the smooth regions. However, all
the internal features of the shock wave events are
preserved.
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Figure 2. Wave pattern in a shock tube closed at ends a- for mach number M2 < 1 b- for mach number M3> 1.
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Figure (4) illustrates the results using Lax method.
The contact discontinuity is barely visible in the density
profile. The corners at the end points of the rarefaction
waves are highly rounded. The constant state between
the contact discontinuity and the shock wave is barely
existent. It is clear that this scheme entails extremely
high dissipative errors.

Figure (5) shows the results of the Lax and Wendroff
scheme. There are slight overshoots at the shock wave
and more noticeable overshoots at the contact
discontinuity.The rarefaction waves are predicted
accurately.The corners at the end points of the
rarefaction waves are only slightly rounded.

Figure (6) represents the results of the MacCormack
Method.There are certain overshoots at the contract
discontinuity and the shock wave. The rarefaction
waves are very accurate. The end points of the
rarefaction waves are only slightly rounded. It may be

observed that results of figure (6) are quite similar to
those of figure (5).

From the previous analysis it is evident that all
methods produce one of two error patterns.First order
methods show an inaccuracy in the solution at regions
far from steep gradients. Also smearing in the solution
at steep gradients are always exhibited .Higher order
methods despite their accuracy in smooth regions and
prediction of steep gradients without smearing, produce
non-physical oscillations at sharp gradients. The
methods have to be incorporated with damping
procedures to suppress the oscillations. The phoenical
flux correction method ,to suppress the oscillation, has
been used for all higher order schemes.

The computation's time duration is primarily a
function of the numerical method itself and efficiency
of the computer program and these are the time
duration of each scheme for case 1:



iLl

lel.·( .J

";10(

p'1l( "J
0

1 7tl(.

<
II!')(..

i !KJ(.

.~ .,.
"" .)

,,, 0)

10(', .J -
do L - -'----'---_.02 04 08 oe

X/I.

(e) F'.SlIUfe Oi.t r tt>ut ion

.. ,

--
"E
E
>

~~ I -

111'.0(1:'.,

1000:'):"11

~(\()Ofl.l

~()~'I -

~ 100(10 J -.,
&00ft(·~

j ~OO()(· ) .-
4t1()Ot".\ -., )oon(.·~

20001 J

100f\!.·) -
do

,)(1'1

<
>

1 Hilt

12

10

'a c -
~><
.E a-

f .-

_L--_L--L-.-
o 2 0 .•• 0 e 0.8 I I.

></L
(d) Densll. Olltrlbu';on

.00 - plJ
.f
.5 .JO()

I!

J 200 -

'0\\.0 I I I
0.2 0.• De 0.' In

></L
(b) TemfM:rolur. Di.hibulion

I I 1_-.-1-._.
0.2 0." 0 III 0."

></L
(d) Density Diat,iblJHon

'2
..~

'0

'i1 III -
?
.E •• -
~
I!.!: • ..

L. __ L._--------.-L __ ._ L _
02 04 06 o. 10

X/l
(c) Pre:uu,e Distrit..ulion

L I I I
02 0.... OS 0 .•

></L
(b) Temperature Dlslribution

!..•
§ 300

e
II
! 200 -

1011.0



., ••.•••..•"... I
•••• oo •• -- •• ~ ~

:':'
:'
:'.

"00

1200 --~~j 1000 -,~.\

':,
.~ II()O - .. \

j . ~ ~
eoo •• I

I

j 400 - oo •• ~ I,.,
200 - I

:'
20 12 '" 20

W "",.'r.es
(b) Mea. \I.locJt~ Diatrlbutton

Reeulh oft., lS mil

j
, 1(.

=-= ~~~gllC~t -0
._-- cr- .Otll75 • 5t ,()()12~
•••••••.• pet im80t

I,
i) 8 us

n.ne N\ ,.,....

(c) Plttssure nt 0 Sto'ion 3 •.•.t frOfY'l 0iot:·t ••.arn

Figure 7. Numerical simulation modified method of spalding with analytical solution and experimental
measurements.

~,., " "00
:;;r~___ -~ - - J1200 ~ " ,.. _.. i

~ .. \

1000 - . - - .. \
2('" - I .. .. - - - - .•... •.•.. - , .~ ~ " .....

E " " " " \.Ii 800 -- " ,,~,~ f ' .,

t aoo - .. .~ .,
!! 10.1 - >-

II 400 .. ".,
J ,,,

,
12

)( tn.'r••
(b) Mos. Velocity Ol,tr-ibution

=-= Cf~~~O~t -0. - - - cr- .00175 • 51 .00125
•.••...• ewperi"..ent



1400

1200 -

~ 1000

?_. 800,
MO .-

j 400 -

ZOO

00

20:'
E,
B
.: ICiI -

r~·~=~~:.; __- •• -1
_' I

!
" '200000 -

,J

.,>-.,.~

,.
•....... I

••', I

1
I
I

14

=-= b~gticC}4l -0
-_.- Ct- _00175 • 51 _00125
••••••• peri~t

Figure 9. Numerical simulation laxwendroff method with analytical solution and
experimental measurements.

!( 1600 -----------c--.---- 1400 - ....~ 'ji 1200 -......•
:le" - ..;i -_\._. .•...

E
.' ~, ~.- , '" 1000 -.

" -, , "' ...:.
B f 800 - ,,

40.,
,

:f 10 , - ,.,.
j 400 ."'

300000 .---- - .-
-a

~' ..'II ,'-JI¥- .,f.

• oo0סס2

i
I.r

100000

=-= r,'~~IC~1 -0
._-- Ct- .00175 • SI .00125
••••• e•.periment

n".. '" "'_
(c:) Pressure ol 0 Station ..3 mt r,.c::wY\ DioJ"hram

Figure 10. Numerical simulation maccormack method with analytical solution and
experimental measurements.



Scheme CPU time, sec.

Lax Scheme 15
Modified Method of Characteristics of Spalding 59
Explicit MacGormack scheme 96
Single Step LaxWendroff Scheme 98

The results of case 2 are presented in figure (7) to (l0)
in which the algebraic frictionless adiabatic solution is
compared to the numerical solution without friction and
heat transfer and to the numerical solutions with
friction and heat transfer and the previous results are
compared to the experimental results. The comparison
is performed after 15 ms from the rupture of the
diaphragm.

Figure (7) represents the results of the modified
method of characteristics of Spalding. The method
predicts the velocity and pressure distributions for the
frictionless adiabatic t10w fairly accurate, but that the
sharp corners are rounded.

Figure 8 shows the results of the Lax method the
scheme entails high inaccuracy. The smearing effect
and the friction effect have produced a solution far
from true not only from the analytical view point but
also from the comparison with experimental results.
Figure 9 shows the results of the Lax and wendroff

method. The method shows very good velocity and
pressure distributions for both the ideal and actual
cases but the numerical shock is somewhat faster than
the analytical one. The method exhibits a very good
resemblance with the experimental results .
Figure 10 represents the results of the MacCormack

method. The scheme is quite accurate when comparing
the analytical solution with the numerical solution
without friction and heat transfer except for a slight
overshoot at the contact discontinuity . However, the
numerical solution with friction and heat transfer is
quite inaccurate in the velocity and mass velocity
profiles.

It may be concluded that the tirst order method of
Spalding shows the least smearing and high accuracy.
The higher order methods are generally more accurate
but with unrealistic spikes and ravines that appear with
discontinuities . One higher order method that
exhibited the least oscillations after the application of
the damping method is the Laxwendroff second order
method.

The modified method of characteristics of Benson
fails to handle the shock tube problem. It can not deal
with problems of high entropy gradients because it is
not incorporated with entropy modifying terms Le.it
adopts the homentropic t10w cases of low pressure
ratios.

Lax scheme proved to be the fastest in obtaining a
solution but at the expense of accuracy as it shows
large dissipation errors. The other methods showed
comparable CPU times in both the frictionless adiabatic
and the actual cases but with different performance
characteristics.

From the accuracy point of view , the methods except
Lax highly dissipative scheme, showed relatively
comparable error levels but with first order methods
showing some smearing at the end points of sharp
gradients while higher order method showing certain
dispersive errors in the form of spikes and ravines at
sharp gradients which had to be damped in order to
obtain stable solutions

The modified method of characteristics of Benson and
Lax scheme are not recommended for the study of high
pressure ratio unsteady t10w phenomena since the first
scheme fails to handle the entropy discontinuities and
the second produce high dissipation errors.

The higher order methods are ideally suited for
unsteady t10w problems where no sharp gradients can
appear. The solution becomes oscillation free and
superior to first order methods from the accuracy view
point.

The tirst order method of characteristics of spalding
is one method that is superior to higher order methods
due to its oscillation free solution, especially at sharp
gradients and low error levels but at the expense of
some smearing of the sharp gradients.
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Gas sonic speed
Sonic speed at SA and reference
pressure.
Specific heats at constant pressure and
constant volume.
Friction factor.
Duct diameter.
Specific internal energy
Friction force per unit fluid volume
Spatial grid points
Time level steps.
Gas pressure
Heat transfer per unit fluid volume
Gas constant
Specific entropy
Stanton number
Time
Wall temperature
Gas velocity
Space coordinate
Specific heat ratio
Gas density
Non-dimensional entropy,
(exp (.r...:::..J.s) where s = sIR.
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Reimann variables.


