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Behavior of laminated unit depends mainly on the material ,of the plates as well as the shear modulus of
the interlayer. Several unknowns face the designer who is considering the use of laminated units in
engineering applications. The designer has little authoritative resources that provide insight into the
structural mechanics of laminated units. The present work is aimed at developing a mathematical model
for the nonlinear analysis of laterally loaded rectangular laminated units resting on elastic supports. Using
variational calculus and the principle of minimum potential energy tIve nonlinear differential equations
withappropriate boundary conditions are obtained. These equations are solved numerically \Ising the tinite
difference method with an iteration routine. The present model is used to provide an insight into the stress
pattern at the linear and nonlinear stages of the behavior of laterally loaded laminated unit having
different degrees of interlayer shear modulus.

Laminatedunit consists of two (or more) monolithic
platesglued together by an elastomeric material to
formone unit. Laminated glass units are used in a
varietyof products to resist a wide range of loading
and environmental conditions. Included are
architecturalglazing products such as insulating glass,
overheadglazing, and safety glazing. There are two
principaladvantages of laminated glass over monolithic
plate.First, the material properties of architectural
laminatesare such that when glass fracture occurs, the
individualfragments remain adhered to the plastic
interlayerand complete collapse of the glazed member
is prevented. Secondly, architectural laminates are
constructedin such a way that they can be effectively
employedin the control of shading and solar heat gain
inbuildings.
Withlarger sizes of thin plates being subjected to

lateralloads, the maximum lateral displacement of the
platecan exceeds several times the thickness of the
plate.When the maximum lateral deflection exceeds
about75% of the plate thickness, linear theories are
notuseful, where membrane stresses are developed in
theplate in addition to bending stresses. A nonlinear

plate theory was developed by von Karman [1] in
1910. He coupled the effect of in-plane force with out-
of-plane detlection by using t,he principle of minimum
potential energy and applying the Euler equation.
Closed form solution for von Karman theory, even for
simple square plate, is not known. With the help of
digital computers numerical techniques such as finite
difference and tInite element are developed to solve
von Karman equations.

In an early work, Hoff [2,3] derived the differential
equation of sandwich beams subjected to lateral and in-
plane loading using. the principle. of virtual
displacement. His results have been shown to agree
well with his own experimental results. Based on the
assumption that plane section for the whole sandwich
plate system before bending remains plane after
bending, Reissner [4] in 1948 and Wang [5] in 1952
developed equations for finite detlection of sandwich
plate. They considered the transverse deformation and
compressibility of the inner core but neglected the



bending resistance of the face plates. Reissner theory
is not applicable to laminated glass problem since it
was derived for a thick core as compared to the two
plates.

Hooper [6] in 1973 performed theoretical and
experimental research on the bending resistance of
laminated glass beams. He found that the bending
resistance of these beams depends primarily upon the
thickness and shear modulus of the interlayer. Thicker
interlayers were observed to demonstrate lower
effective shear modulii than thinner interlayers of the
same material. Furthermore, the effective shear
modulus of the interlayer was found to be inversely
proportional to plasticizer content, ambient
temperature, and duration of loading. Hooper
concluded that for sustained load (e.g., snow and self
weight) laminated units should be considered as two
independent glass layers, with no coupling effect due
to the interlayer. For wind loading, glass bending
stress may be estimated on the basis of an interlayer
shear modulus corresponding to the maximum
temperature at which such loading is likely to occur,
due to solar radiation effect. Hooper's conclusions are
based on evaluation of the behavior of small scale
beams [2xlOxO.8 in. (50.8x254xI6 mm)].

Behr, et al. [7] in 1985, due to lack of mathematical
model for analysis of laminated glass units, compared
the behavior of laminated plate to that of layered plate
(without interlayer) and monolithic plate having the
same size and thickness. The experimental data
revealed that the behavior of laminated plate was closer
to that of the monolithic behavior at ordinary
temperature. At higher temperature, the interlayer
soften and the behavior becomes closer to that of
layered plate.

Reznik and Minor [8] in 1986 and Linden, et al. [9]
in 1988 conducted extensive experimental study on the
load deformation characteristic and strength of
laminated glass units as compared to their monolithic
counterpart. Reznik and Minor concluded that larger
strength-factor values than those adopted by model
building codes [10, 11, 12] may be justified, at least
for loading conditions in which short-duration loads
(e.§.., wind load) occur at temperatures below about
49 C. (The relative strength factor is the ratio of the
strength of laminated glass relative to the strength of
monolithic glass. This factor is less than one.)

Das and Vallabhan [13] in 1988 developed a

sophisticated mathematical model for the nonl' wil
analysis and structural behavior of sandwich' bo
where they took into consideration the transverse th
deformation as well as the compressibility of the
Their model only among the previous mod
theoretically applicable to the nonlinear analY!1
laminated plates since the assumptions used agree
with the mechanics of the problem as observ~
experiments. However, their model is too complex
have not been formulated numerically.

Later, Vallabhan, et aI. [14] in 1991,
variational principle and von Karman assumptiolll
large detlection of plates developed a more simpI'
mathematical model. They show that the c13.1£
assumption, that plane section for the whole unitbi
deformation remains plane after deformation, bero:
nonrealistic. They assumed a more realistic assuIl1jIe
that plane section before deformation remains~
after deformation for each individual plate and!hi
interlayer transmits certain amount of shear beli:
the two glass plates. Their model is limited tos' s
supported boundary conditions.

Rarely, is perfect fixity attained along the boundz
of a plate and the boundaries should in realiq
considered to possess varying degrees of in'
displacement restraint, out-of-plane displaceD
restraint and rotational restraint in the lateral directe
The aim of the present work is to establ'

'mathematical model capable of analyzing lamim
plates resting on elastic supports along'
boundaries. Here, the laminated unit is assumedtr
resting on two transational springs and one rotati
spring as shown in Figure (1). The transational spr.
act in the in-plane and the out-of-plane directions.'
rotational spring resists the plate rotation in thel~
direction along its edges. The present model isus«
provide an insight into the behavior of structur.
glazed architectural laminated glass units. Thism;
is an extension to the work done by Vallabhan ~
[14].

The mathematical model is based on the conc~
minimum total potential energy of the plates ana
interlayer of the laminated glass unit. The plate
have different thicknesses and will have both be
and membrane strain energies, whereas the inter



willhaveonly shear strain energy. Since the plates are
oondedtogether, there is continuity of displacement at
ilieinterfaces and plane sections remain plane in the
individualcomponents, but not -for the entire
composite.All assumptions made in the von Karman
nonlineartheory of plates are used for modelling the
glassplates. Since the thickness of the interlayer is
relativelysmall its compressibility is neglected and
onlythe shear strain energy in the interlayer is
considered.
Thetotal potential energy V of the laminated unit can

beexpressedas:
T'(l) r'(l) T'(2) 7>(2) r,(1) r,(1) -

V-u: +u~b +U· +U~b +U_' +U_' +0m m Xl y%

hereV<2 and rJ~ are the membrane and bending strain
energiesof plate (i); respectively, where i = 1, 2 for

topandbottom plates; respectively. Also, U~and U~
aretheshear strain energies of the interlayer due to the

shearstrains y<:l and y~; respectively and 0 is the
potentialenergy function due to the applied loads.

Themembrane energy function of the plate can be
expressedin terms of the strain in the plate as:

(+b(2)(+D/2)

u2;; I I U~) dx dy
( -b(2)( -D/2)

wherehi denotes thickness of the plate (i), a and bare
thelengths of the plate in the x and y directions;
respectivelyand i = 1, 2 denotes the top and bottom
plates;respectively. The subscript "conuna."notation
representsdifferentiation with respect to the variables
followingit.
Similarly, the bending strain energy function is
expressedas:

(+b(2)(+D/2)

u~- I I u~1)dxdy
(-b(2)(-afl)

For the interlayer, Figure (2), the average
strain, 'h:z is given as:

Y ;; A.. + e ;; -w, + u,
Xl ~ % ~

[
hi h" ]

Y ;; u - u - w (- + - + t) It
Xl I 2 'll: 2 2

where t is the thickness of the interlayer.
Similarly,

[
hi h2 ]

Y ;; v - v - w (- + - + t) It
)'t I 2 "2 2

Making use of Equs. (6) and (7), the interlayer shear
strain energy expressions are given as:

(+b(2)(+afl) (+bf2)(+D{l)

ff:= I I U;:dxdy= I I -!G/y~dxdY (8)
(-bfl)( -afl) (-bf2)(-a(2) 2

(+bfl)( +afl) G [ h ]2
ff:= I J _I "1 -U2 -W'll:(-.! + h" +t) dxdy (9)

(-bfl)( -D/2) 2t 2 2
Similarly,

_ (+bfl)(+afl) G [ h ]2u:;;; I I _I VI -V2 -w,,(-.! + ~ +t) dxdy (10)
(-bf2)(-afl) 2t 2 2

For the case of symmetrical lateral load, q, acting on
the laminated unit, the load potential energy function 0
is given by:

(+b(2)(+afl) (+b(2)(+afl)

Q - I I Odxdy =- I' I qwdxdy (11)
(-b(2)(-afl) (-b(2)(-afl)
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Substituting from Equs. (3, 5, 9, 10 and 11) into
Equ. 1, the total potential energy V of the laminated
unit is given as:

(+b(2.)( +Q/2)

v= f f [u~l)+u~l)+u~)+uf)+u~+U:+Q]dxdy (12)
(-b(2.)(-<l/2.)

( +b(2)( +af2)

v= f f Fdxdy
( -b(2)( -0(2)

E(h:+~~ [2 2
+ ---- wtx;r+w"",+2vw, w. +2(l-l24(l-v2) -JJ xx yy

[

2
0] hi hz

+ - " -" - w (- + - + t)2t12 'x2 2

[ ]

2
0] hi ~

+ - v - v. - w (- + - + t) - !
2t12"22

Using the principle of minimum potential ener
Euler equations can be obtained as:

aF a [ aF] a [ aF 1 az [ of I
as - ax as'x - ay as" + ax2 os,x%

az [ OF] cP [ aF 1
+ ayax as':ry + ay2 as,» =0

where s denotes "1' Vi' "z' Vz and w; respeetL
Using Equ. (15), one gets the five equati



G[ hI h2
--(- +- +t)(u -u +v -v) (16)t 2 2 1,% 2,% 1,y 2,y

I-v 1+v GIl -v) hi hz
-w",(w,,,,,+-w.,)--w,,,,w., ----.(- +- +t)w", (17)

2 2 2Ghlt 2 2

I-v 1+v Gt1-v) hi hz
-w~(w.."+-w",)--w..,.w,,,---(-+-+t)w., (18)

2 2 2Ghlt 2 2

I~[:/;':' -G;~~:)lu,+[I;,:ayH~~~:}=

1- v 1+ v Gt1 - v) h hz
-w",(W'''''+-2-W.,)--2-W,,,,w'y- 2Gh.zt(21 +"2 +t)w,,,(19)

1- v 1+ v Gt1 - v) h h.z
.w~(w.."+-w",)--w..,.w,,,----(.2 +- +t)w'y(20)

2 2 2Ghf 2 2

where G is the shear modulus of the plate material,
1~ andD]andD2 are the flexural rigidities of the top and

bottomplates;respectively. Also, e,x , e,y and e,xy are
the nonlinearmembrane strains, which are expressed
interms of the displacements as:

In Equs. (16, 17, 18, 19 and 20), the left-hand side
constitutes only of linear terms. Nonlinear terms in the
lateral deflection w are brought to the right-hand side.
This arrangement is essential for the iterative procedure
discussed later in this paper.

The different degrees of restraints along the plate edges
can be expressed in terms of three elastic springs as
shown in Figure (1). In this figure Kv , Km and Kb
represent the out-of-plane, the rotational and the in-
plane spring constants along the plate boundaries;
respectively. If the axes are taken as shown in Figure
(3), the different boundary conditions can be expressed
as:
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Figure 3. Finite difference mesh for in-plane displacements.

-(D! +D2)[w,yyy+(2-v)w,xxy] = -wKv and(32)

-(D! +D2)[w,yy+vw,.u] = -w,yKm (33)

The above boundary conditions are given for a
quarter plate, assuming symmetry with respect to x and
yaxes.

The well known central finite difference technique is
used to transform the continuous functions "1' "2' VI'
v2 and w into discrete values at every point of the finite

difference mesh. The system of differential equali
is transformed therefore into a system of aIgeOi:
equations. The terms in the left-hand side of the
and boundary equations, being linear, can
transformed into linear differential operators, whilf
the nonlinear terms in the right-hand side
condensed into a right-hand side vector. For thelae
deflection, w, the finite difference mesh siu
(n +1)(n +1) where nx and ny being the number
subdivisfi>ns in the x and y directions; respectively
Figure (3». The complete finite difference mola'!
for the lateral deflection with the associated bounl:
conditions are given in Ref. [15].

For the in-plane displacements, "1' "2' VI andfl
finite difference mesh size is (nx + 2)(ny + 2).
addition to the edge displacements, fictitious po:
outside the domain are considered in the proximi~
the edges of the plate (Figure (3». At every porn
the finite difference mesh, there are four unknowns
"2' VI' v2 and four finite difference field equations
written per point. Along the edges x = 0 and y :
the field equations are modified to account for



boundaryconditions, while at the edges x = a/2 and
y = b12, four additional boundary condition equations
perpoint are applied, so that the total number of
unknownsis equal to the number of equations. At the
cornerpoint lying at the inter-section of the plate
edges,the field equations are modified and twelve
independentboundary conditions are written. The total
number of in-plane displacement unknowns is
4(nx +2)(ny +2). The finite difference equations for the
in-planedIsplacements with the associated boundary
conditionsare given in Ref. [15].
Thefive nonlinear differential equations (Equs. 16,

17,18, 19 and 20) are solved using the classical finite
differencemethod. In a matrix form, the left-hand side
ofthe algebraic equations generated from field Equ.
(16) are stored in matrix [A], while those equations
generatedfrom Equs. 17, 18, 19, and 20 are kept in
matrix[B]. Therefore, the system of equations can be
writtenas:

[A] {W} = {q +/1 (W 'UI'~' VI' v2)} (34)
[B]{ U} = {/2(w)} (35)

where{W} is the lateral displacement vector, {U} is
thein-plane displacement vector, constituting of the
valuesof u}1 vl' "2 and v2; respectively, at every finite
differencemesh point and {q} is the applied lateral
loadvector.
Matrix[A] is symmetric and banded; therefore only

a half banded matrix is used in the solution process
whilematrix [B] is found to be unsymmetric when all
the boundary conditions are incorporated. The
iterativescheme explained below is employed in the
solutionprocess.
Sincethe right hand-side of Equs. (34) and (35) are

notknown priori, values ofu l' "2' Vl' v2 and W from
the(i-1)thiterative step are used to form the right-hand
sidevector of system (34) of equations for the ith
iteration.The new set of equation(s) at the ith step
become:

[A] {W}i= {q +/1 (W, UI, VI,~, v2)}(i-I) (36)
[B]{ U}i = {/2(w)}; (37)

Equ.(36) is solved for {W}. The new value of {W} is
usedto calculate the right-hand side of Equ. (37) that
is solved for {U}, i.e., "], v], "2 and v2' The
procedureis repeated until the solution converges to a

final value for each increment of load such that, the
error in w for the ith iteration:

N
L II wi _wy-1) II

ei = j= 1 N :S 'Y(wmaxi (38)

in which N is the total number of nodes in the grid,
where 'Y is a prescribed small positive number to
represent the iteration tolerance.

It is found that the above iterative scheme will
converge only in the case of small deflection. When
deflections become large, the scheme will diverge. By
dividing the load to a number of increments and using
interpolated values of the lateral displacement w, the
iterative technique will converge faster to the correct
solution.

The purpose of this example is to study the effect of
the mesh size on the accuracy of the finite difference
method. Also, the effect of the spring coefficients Km
and Kh on the behavior of the unit is included in this
example. The unit dimensions and properties are as
follows: a=b= 150 cm, hI =h2=0.4 em, t=O.1 cm,
E=6.9x106 N/cm2, u=0.22, G1= 100 N/cm2, and
~= 1020 N/cm2.

Table 1. Maximum reached load (qmax)' maximum
deflection (wmax)' maximum principal stress (O'p) and

cpu time for different mesh sizes
(Km=Kh=O).

Mesh qmax • O'p./(J'p cpu time(N/cm2)
wmax /wmax

Size at max. load at max. load (hh:mm:ss)

5x5 0.4 0.851 0.790 00:00:35

10xlO 0.8 0.940 0.878 00:06:09

12x12 0.9 0.957 0.920 00:12:58

15x15 1.0 0.982 0.977 00:25:26

18x18 >1.0 0.990 0.984 01:10:54

20x20 > 1.0 1.000 1.000 01:51:52

Wmax * and O'p* are the maximum deflection and
maximum principal stress for (20x20) mesh size.
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Mesh size: 5x5
Mesh size: 10xl0
Mesh size: 12x12
Mesh size: 15x15
Mesh size: 18xl8

-- Mesh size: 20x20

0.4 0.6 0.8

Load (N/cm2
)

F1gure 4. Central deflection vs. applied lateral load for different mesh sizes.

Mesh size: 5x5
Mesh size: 10xl0
Mesh size: 12x12
Mesh lri.ze: 15xHi
Wesh size: 18x18
Mesh size: 2Ox20

0.4 0.6 0.6 1.2
Load (N/cm2

)

F1gure S. Maximum principal tensile stress vs. applied lateral load for different mesh size.
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LOAD (N/cm.lI)

3.2 -- K.== 0.0
2.• - K.= 10· N/rad.

- - Jr",,=10· N/rad.
- - K".= lOll N/rad.1.8 ---- K.= 10· N/rad.

0.6

0.0
0.0 0.2 0.• 0.6 0.8 1.0 1.2

LOAD (N/czn·)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

LOAD (N/cma)

0.2 0.4 0.6 0.6 1.0 1.2

LOAD(N/cmR
)

Theeffect of the mesh size on the accuracy of lateral
deflectionsand maximum principal stresses are shown
inFigures (4) and (5). The total computation time in
seconds,cpu time, on Micro/Vax computer for various
meshsizes is shown in Figure (6). Finer mesh sizes
leadto better convergence through load steps and
hencehigher load levels can be analyzed. Table (I)
reportsthe highest load level reached through the
analysisand the corresponding computation time for

the different mesh sizes. Also, included in this table
are the ratios of maximum deflection and maximum
principal stress of each mesh size compared to those of
20x20 mesh size. As can be seen from this table for a
15xl5 mesh size, the deflection and maximum
principal stress differ by about 2 % of their correlatives
obtained from 20x20 mesh size; however, the cpu time
reduces, for the 15xl5 mesh size, by about 77%.





KANDIL, EL-NAGGARand SAK.R:Nonlinear Analysis of Laterally Loaded ...

Table 3. Stress distribution in the x-direction through the cross-section at the center of monolithic, layered and
laminated plates (q= 1.2 N/cm2).

Case OJ, Stresses in x-direction (}eN I em 2 )

N/cm" Section Bending stress MembnlOe stress Total stress

I t. .612 0.123 4.499

Lay. 0.0. ~I'
11}o .

4. G12 0.123 4.735

:'.)5 B 1.026 5 .3~l.

111'!bO
Lam. 50 b -

° 111io '
I
I J..350 1.026 5.3~4

I 1.541 5.412

111'
Lam. 100 LI) 0 Ib .

°11}o '

3.071 1.572 5.L. 43

17 5.3

111'wo6 -Lam. 130 ° 111io .

36 172 2 5.322

6.25S. 0.032 6233

M II?
0

6.265 0032 6.297



Table 4. Stress distribution in the y-direction through the cross-section at the center of monolithic, layered art
laminated plates (q= 0.04 N/cm2).

Case G, , SectionNlem"

I

Lay. 0.0. ~r
~}1

I~rIDO
Lam. 50 b

o ~lio '

s ~Ii====1
o I'~I!

_;.-1 _...J

I

~I'IDO

b
o ~lio '

Stresses in y-direction (kN I em 2 )

Bending stress Membrane stress Total stress

0.182

0.03 0.128/.

~O3 012\
0.03 0.068

:).03 0.1284

0.038 0.105

0.038
0.038

0.038 0.105

0.015 0.072

0.015
0.01:,

0.015 0.072

o J92
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Table S. Stress distribution in the y-direction through the cross-section at the center of monolithic, layered and
laminated plates (q= 1.2 N/cm2).

Alexandria Engineering Journal, Vol. 33, No.2, April 1994



Figures (7a-7d) show the deflection at the plate center
versus the applied load for different values of the
spring coefficients Km and Kh. As can be seen both Km
and Kh have a significant effect on the deflection of the
plate. Also, increasing Km reduces the effect of Kh.
Meanwhile increasing K" reduces the effect of Km.

The purpose of this example is to study the effect of
the interlayer shear modulus G[ on the stress
distribution through the plate thickness. The
dimensions and properties of the unit are as follows:
Size of the unit a= 50 em

b = 100 em
hI = h2 = 0.25 em
E = 6.9x106 N/cm2

u = 0.22
t= 0.075 em

K = 102° N/em2
v

K = 0m
K = 0v

Thickness'of each plate
Modulus of elasticity of glass
Poisson's ratio of Glass
Interlayer thickness (if any)
Out-of-plane spring coefficient
Rotational spring coefficient
In-plane spring coefficient

Tables (2) through (5) show the stress distribution
through the thickness in the x- and y- directions at the
plate center. This stress distribution is shown at load
levels of 0.04 and 1.2 N/cm2 and at different values of
G[ (0, 50, 100 and 130 N/cm2). The following
conclusions can be obtained from the examination of
these tables:
1- At small load level (q= 0.04 N/cm2, i.e., linear

behavior) there is only bending stress at the center
of the monolithic plate and the layered unit.
However, at high load level (q= 1.2 N/cm2, i.e.,
nonlinear behavior) there is also membrane stress
due to large deflection.

2- The bending and membrane stresses in the top
plate of the layered unit with equal plate
thicknesses are equal to those of the bottom plate.

3- For a laminated unit subjected to small load level
(q= 0.04 N/cm2) , no direct membrane stress
exists. Here, the lateral load is resisted by bending
action in addition to the shear forces transferred
by the interlayer. These shear forces cause normal
compressive stress in the middle surface of the top
plate and normal tensile stress in the middle
surface of the bottom plate. These normal stresses
are constant through the thickness of each plate

and are named here as "indirect m
stresses." The moment of resistance offue
unit in this case (linear stage) is thesum
moments resisted by each plate in additiOD
couple caused by the compressive and
forces in the top and bottom plate; resp ,

4- For a laminated unit subjected to highlo~
(q= 1.2 N/cm2), the total membrane stresl
sum of the "indirect membrane stress'd'
above and the "direct membrane stresses'
large deflection. Here, the bottompi
subjected to tensile membrane stress; howel
top plate may be subjected to compresi
tensile membrane stress according to the
the "indirect membrane stress" whi
compression and the "direct membrane
which is tension.

5- As the shear modulus of the interlajC
increases, the unit becomes more stiffer,
total stress distribution approaches that
monolithic plate.

6- The membrane stress in the short directiOD
rectangular plate having b = 2a is very
compared to that in the long direction. Ho~
the bending stress in the short directionis
than that in the long direction.

In addition to the above conclusions obtained
example 2, the following conclusions can belea
from the present research:

1- The present model is a useful tool for the nom
analysis of thin laminated units resting on
supports.

2- The model successfully simulates the layered
by equating the shear modulus and thickness
interlayer to zeros.

3- Finer finite difference meshes lead to
convergence through load steps, and higher
levels can be analyzed than in the cases of
meshes.

4- The spring coefficients Km and Kh hall
significant effect on the deflection and henceo
stresses of the laminated unit.

5- At high values of Km (exceeding about 105 Nln
the effect of K" on the unit deformatioru



negligiblefor the examples cited here. Also, at high
valuesof Kh (exceeding about 105 N/cml), the
effectof Km on the unit deformations is negligible.
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