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Behavior of laminated unit depends mainly on the material of the plates as well as the shear modulus of
the interlayer. Several unknowns face the designer who is considering the use of laminated units in
engineering applications. The designer has little authoritative resources that provide insight into the
structural mechanics of laminated units. The present work is aimed at developing a mathematical model
for the nonlinear analysis of laterally loaded rectangular laminated units resting on elastic supports. Using
variational calculus and the principle of minimum potential energy five nonlinear differential equations
with appropriate boundary conditions are obtained. These equations are solved numerically using the finite
difference method with an iteration routine. The present model is used to provide an insight into the stress
pattern at the linear and nonlinear stages of the behavior of laterally loaded laminated unit having

different degrees of interlayer shear modulus.

INTRODUCTION

Laminated unit consists of two (or more) monolithic
- plates glued together by an elastomeric material to
form one unit. Laminated glass units are used in a
variety of products to resist a wide range of loading
and environmental conditions. Included are
architectural glazing products such as insulating glass,
overhead glazing, and safety glazing. There are two
' principal advantages of laminated glass over monolithic
plate. First, the material properties of architectural
laminates are such that when glass fracture occurs, the
individual fragments remain adhered to the plastic
interlayer and complete collapse of the glazed member
is prevented. Secondly, architectural laminates are
wnstructed in such a way that they can be etfectively
. employed in the control of shading and solar heat gain
in buildings.

With larger sizes of thin plates being subjected to
lateral loads, the maximum lateral displacement of the
 plate can exceeds several times the thickness of the
plate. When the maximum lateral deflection exceeds
about 75% of the plate thickness, linear theories are
1t useful, where membrane stresses are developed in
the plate in addition to bending stresses. A nonlinear
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plate theory was developed by von Karman [1] in
1910. He coupled the effect of in-plane force with out-
of-plane deflection by using the principle of minimum
potential energy and applying the Euler equation.
Closed form solution for von Karman theory, even for
simple square plate, is not known. With the help of
digital computers numerical techniques such as finite
difference and finite element are developed to solve
von Karman equations.

PREVIOUS WORK ON LAMINATED PLATES

In an early work, Hoff [2,3] derived the differential
equation of sandwich beams subjected to lateral and in-
plane - loading using the principle  of virtual
displacement. His results have been shown to agree
well with his own experimental results. Based on the
assumption that plane section for the whole sandwich
plate system before bending remains plane after
bending, Reissner [4] in 1948 and Wang [5] in 1952
developed equations for finite deflection of sandwich
plate. They considered the transverse deformation and
compressibility of the inner core but neglected the
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bending resistance of the face plates. Reissner theory
is not applicable to laminated glass problem since it
was derived for a thick core as compared to the two
plates.

Hooper [6] in 1973 performed theoretical and
experimental research on the bending resistance of
laminated glass beams. He found that the bending
resistance of these beams depends primarily upon the
thickness and shear modulus of the interlayer. Thicker
interlayers were observed to demonstrate lower
effective shear modulii than thinner interlayers of the
same material. Furthermore, the effective shear
modulus of the interlayer was found to be inversely
proportional to plasticizer content, ambient
temperature, and duration of loading. Hooper
concluded that for sustained load (e.g., snow and self
weight) laminated units should be considered as two
independent glass layers, with no coupling effect due
to the interlayer. For wind loading, glass bending
stress may be estimated on the basis of an interlayer
shear modulus corresponding to the maximum
temperature at which such loading is likely to occur,
due to solar radiation effect. Hooper’s conclusions are
based on evaluation of the behavior of small scale
beams [2x10x0.8 in. (50.8x254x16 mm)].

Behr, et al. [7] in 1985, due to lack of mathematical
model for analysis of laminated glass units, compared
the behavior of laminated plate to that of layered plate
(without interlayer) and monolithic plate having the
same size and thickness. The experimental data
revealed that the behavior of laminated plate was closer
to that of the monolithic behavior at ordinary
temperature. At higher temperature, the interlayer
soften and the behavior becomes closer to that of
layered plate.

Reznik and Minor [8] in 1986 and Linden, et al. [9]
in 1988 conducted extensive experimental study on the
load deformation characteristic and strength of
laminated glass units as compared to their monolithic
counterpart. Reznik and Minor concluded that larger
strength-factor values than those adopted by model
building codes [10, 11, 12] may be justified, at least
for loading conditions in which short-duration loads
(e.éI., wind load) occur at temperatures below about
497C. (The relative strength factor is the ratio of the
strength of laminated glass relative to the strength of
monolithic glass. This factor is less than one.)

Das and Vallabhan [13] in 1988 developed a
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sophisticated mathematical model for the nonl
analysis and structural behavior of sandwich|
where they took into consideration the transversg
deformation as well as the compressibility of thes
Their model only among the previous mod
theoretically applicable to the nonlinear analy
laminated plates since the assumptions used agre!
with the mechanics of the problem as obsen
experiments. However, their model is too complex
have not been formulated numerically.

Later, Vallabhan, er al. [14] in 1991, &
variational principle and von Karman assumption
large deflection of plates developed a more sim
mathematical model. They show that the cla
assumption, that plane section for the whole unith
deformation remains plane after deformation, bew
nonrealistic. They assumed a more realistic assun
that plane section before deformation remains|
after deformation for each individual plate and thd
interlayer transmits certain amount of shear be
the two glass plates. Their model is limited to si
supported boundary conditions. ‘

Rarely, is perfect fixity attained along the bound
of a plate and the boundaries should in redli
considered to possess varying degrees of inf
displacement restraint, out-of-plane displac
restraint and rotational restraint in the lateral dired
The aim of the present work is to establs

plates resting on elastic supports along
boundaries. Here, the laminated unit is assumed{
resting on two transational springs and one rota
spring as shown in Figure (1). The transational
act in the in-plane and the out-of-plane directions
rotational spring resists the plate rotation in the ld
direction along its edges. The present model is ug
provide an insight into the behavior of struc
glazed architectural laminated glass units. Thisn
is an extension to the work done by Vallabhand
[14].

THE MATHEMATICAL MODEL

The mathematical model is based on the concg§
minimum total potential energy of the plates af
interlayer of the laminated glass unit. The platf
have different thicknesses and will have both b
and membrane strain energies, whereas the inte



bonded together, there is continuity of displacement at
fie interfaces and plane sections remain plane in the
idividual components, but not for the entire
wmposite. All assumptions made in the von Karman
mnlinear theory of plates are used for modelling the
gass plates. Since the thickness of the interlayer is
eltively small its compressibility is neglected and
‘aly the shear strain energy in the interlayer is
wnsidered.

The total potential energy V of the laminated unit can
be expressed as:

VTS TOTOTR-TO-TOT ()

tere U” and TY are the membrane and bending strain
mergies of plate (i); respectively, where i = 1, 2 for

wpand bottom plates; respectively. Also, U, and U’
are the shear strain energies of the interlayer due to the

shear strains yg’ and yi’z’; respectively and Q is the
potential energy function due to the applied loads.

Strain Energy Function of the Plates

The membrane energy function of the plate can be
apressed in terms of the strain in the plate as:

(+b2)(+a/2)
7.0 ®
7 = f U, dxdy )
(-b{2)(-a/2)
(vb2X+a)
Eh,
- [eu en +2ve, e

(-brzx-omz(l v 3)
+ 5(1—v)ew xdy

where h; denotes thickness of the plate (i), a and b are
the lengths of the plate in the x and y directions;
respectively and i = 1, 2 denotes the top and bottom
plates; respectively. The subscript "comma" ‘notation
represents differentiation with respect to the variables
following it.
Similarly, the bending strain energy function is
gxpressed as:
(+b2)(+a/2)

('7 dxdy 4)
(-5/2)(-a/2)

yill have only shear strain energy. Since the plates are
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(+b/2)(+a/2)
W] [z ew,
m(mwwﬂlh = )
200, W,y +2(1 -V)w,xy]tkdy
Strain Energy Function of the Interlayer

For the interlayer, Figure (2), the average shear
strain, 7, is given as:
. = d) <+ e =

w t Uy

h
“=P'“-%%+%+4ﬁ ©)

where ¢ is the thickness of the interlayer.
Similarly,

h h
Yy = [v1 Sy WG z)]/t ™)

Making use of Equs. (6) and (7), the interlayer shear
strain energy expressions are given as:

(+bf2)(+af2) (+b[2)(*a[2)

W= [ [ uldxdy= [ f% yLdxdy (8)
(-b/2)(-4af2) (-b12)(-4f2)
(*bﬂ)(*aﬂ) 2

_ G, h

- f 2t[ul uz—w,x(—2—l+%+t) dxdy (9)
(-b/2)(-4f2)

Similarly,
(+bf2)(+4f2) 2

_ G, h, h

W= [ [vl z—w,y(—21-+?2+t)] dxdy (10)
(-b/2)(-af2)

where Gy is the interlayer shear modulus.
Potential Energy due to the Applied Load

For the case of symmetrical lateral load, g, acting on

the laminated unit, the load potential energy functionQ
is given by:

(+bf2)(+af2) (+b2)(+af2)
Q= f dexd =-f gwdxdy (11)
(-b2)(-af2) (-b/2)(-af2)
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Figure 1. Types of elastic restraints along the unit edges.
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Figure 2. Laminated unit; (a) undeformed section (b) deformed section.

Substituting from Equs. (3, 5, 9, 10 and 11) into
Equ. 1, the total potential energy V of the laminated

unit is given as:

(+b(2)(+af2)

V= f f[US)+U,fn+Uf)+U,§2)+U3’+U$+Q]dxdy (12)

(-bf2X-a/2)

(+b(2)(+a[2)
V= f [ Fdxdy (13)
(-b/2)(-a/2)
where,
Eh, [, 2 1 2
F = 20D e, + €, + 2\ae1)‘e1‘y + 5(1_\’)61"’]
Eh, [, 2 1 2
+ + e, +2ve, e, + —(1-v)e
201 _vz)[‘z.x 2y 262y 2( ) 2,xy]
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Rotational spring (K,,)
In-plane spring (K,)

Out-of-plane spring (K,)

3
. Ek+hy)

2 2
w, +w,l,+2vw, w, . +2(1-
24(1-v2)[ h R

G, hy

2

+ (h1+ +1)
v, —v,-w, (—+—= -
2 2 VY3 2

Using the principle of minimum potential ene
Euler equations can be obtained as:

oF _3[oF|_a[oF], &[oF
a x|as,| oyds,| ax?|ds,

A2

ayax| 3s,,,
where s denotes u,, v;, ¥,, v, and w; respecti
Using Equ. (15), one gets the five equaif




#ilibrium governing the laminated glass plate system:

Gy hy My
DAVE- M M ol
0 +Dy)V* - (5 + 2 t)V]w q

+ve,J)w’n+(e1J+veu)w”+(1—v)el”w”]

+ve2.,)w’n+(e2‘,+veu)w”+(l-v)e2»w”]

1-v?
h,
ety ) 6
¢ .1y & GA-w] [m az}v G(-v)]
& 2 o 2Ghg || 2 axoy|! | 2Ghg |2

1 1-v 1+v G(1-v) h
w,,(w,n+Tw,”)- > WyWy

1 R
2Ghy (5 +5 . (17)

A A 2] WA PEL a’]" G,
2Ghy;t 2 xoy 2Ghgt

GA1-v) hy hz

W, +“T“w,,>-‘*" CeZeom,  (18)

2 etaT 2Ghyt

[#,1v 2 G-V [1__ y]v G(1-v)
z;‘ 2 o2 2Gh,: 2 oxdy 2Gh,:]

l-v. \ le Gf1- v)h h
2 "7 o™ Gy ¢

+t)w (19)

# 1-v & _GA-v)] [m & | [ea-w]
' 2 a¢ 2Ghx |22 axay|? | 26hy }V
_GM-v) b

1- 1+

where G is the shear modulus of the plate material,
ad D; and D, are the flexural rigidities of the top and
bottom plates; respectively. Also, e,, , &y and e, xy are
the nonlinear membrane strains, which are expressed
interms of the displacements as:

1 2 _v’+l 2

1=y ¥ 5 Was 8 =Wy Ew,y and
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€yyy =lUsy VY, +W 21

xy Ty *xy
In Equs. (16, 17, 18, 19 and 20), the left-hand side
constitutes only of linear terms. Nonlinear terms in the
lateral deflection w are brought to the right-hand side.
This arrangement is essential for the iterative procedure
discussed later in this paper.

THE BOUNDARY CONDITIONS

The different degrees of restraints along the plate edges
can be expressed in terms of three elastic springs as
shown in Figure (1). In this figure K, , K, and Ky
represent the out-of-plane, the rotational and the in-
plane spring constants along the plate boundaries;
respectively. If the axes are taken as shown in Figure
(3), the different boundary conditions can be expressed

Atx = O
u=uy=e, =€, =w, =0 and w,_+(2-v)w, =0 (22)
At x = a/2:
e,”=0, em=0, 23)
Eh
N, = : Ley trve ) =-uK,, (24
Nh = (ez’x"'Vez’y):-llth, (25)
-(D, +D2)[w,m+(2-v)w,xyy] = -wK,, and(26)
-(D, +D2)[w,xx+vw,yy] = -w, K, 27
Aty =
V=V, = =6, =w, =0 and w, +(2-Vv)w, =0 (28)
Aty = b/2:
el,xy=0’ e2n=0, 29)
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Figure 3. Finite difference mesh for in-plane displacements.

Eh, difference mesh. The system of differential equi
Ny, = -2 (e1y+ve )=~V Ky, (30)  is transformed therefore into a system of algh
N equations. The terms in the left-hand side of thef

and boundary equations, being linear, ca
transformed into linear differential operators, whik
the nonlinear terms in the right-hand side|
condensed into a right-hand side vector. For the
deflection, w, the finite difference mesh sin
(nx+1)(ny+1) where n, and n, being the numb
subdivisions in the x and y directions; respectively
_ B Figure (3)). The complete finite difference mole
@y +D2)[w’>’y ”w”“] = Wy (33) for the lateral deflection with the associated bour
conditions are given in Ref. [15]. ‘

Eh,
N2 = 1 l"2(32’y"'l’82’x)=‘V2Kh, (31)

~D,; +D2)[W’yyy+(2'”)w’xry] = -wK, and (32)

The abov iti i . .
" te boun(!ary condltlons. g givet for a For the in-plane displacements, u;, u,, v; andy
4 plate, assuming symmetry with respecttoxand  grice difference mesh size is (n, + 2)(n, +1
Y addition to the edge displacements, fictitious pi
outside the domain are considered in the proximi

SOLUTION TECHNIQUE the edges of the plate (Figure (3)). At every poil

the finite difference mesh, there are four unknown
The well know ite di i i .. :
n central finite difference technique is u,, v;, v, and four finite difference field equations

:S?nctlo tr,a‘t‘ngfm the c:lntinuous functions uy, up, vy, yriven per point. Along the edges x = 0 and y
2 winto discrete values at every point of the finite . o1 equations are modified to account fu
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boundary conditions, while at the edges x = a/2 and
) = b/2, four additional boundary condition equations
per point are applied, so that the total number of
unknowns is equal to the number of equations. At the
wrmer point lying at the inter-section of the plate
tdges, the field equations are modified and twelve
independent boundary conditions are written. The total
mmber of in-plane displacement unknowns is
4(nx+2)(ny+2). The finite difference equations for the
inplane displacements with the associated boundary
conditions are given in Ref. [15].

The five nonlinear differential equations (Equs. 16,
17,18, 19 and 20) are solved using the classical finite
difference method. In a matrix form, the left-hand side
of the algebraic equations generated from field Equ.
(16) are stored in matrix [A], while those equations
generated from Equs. 17, 18, 19, and 20 are kept in
matrix [B]. Therefore, the system of equations can be
written as:

(A1 {W} ={q +fi(w,u,uy, vy, ) } (34)
[BI{U}={f,(w)} (35)
where {W} is the lateral displacement vector, {U} is
the in-plane displacement vector, constituting of the
values of u;, v;, u, and v,; respectively, at every finite
difference mesh point and {gq} is the applied lateral
load vector.
Matrix [A] is symmetric and banded; therefore only

2 half banded matrix is used in the solution process

while matrix [B] is found to be unsymmetric when all
. the boundary conditions are incorporated. The
iterative scheme explained below is employed in the
solution process.

Since the right hand-side of Equs. (34) and (35) are
not known priori, values of u;, u,, v;, v, and w from
the (i-1)" iterative step are used to form the right-hand
side vector of system (34) of equations for the ith

iteration. The new set of equation(s) at the i" step
become:

[A]{W}iz{‘I"’fl(W:ul’V]»uz»vz)}(i—l) (36)
[BI{U};={HL(W}; (37

Equ. (36) is solved for {W}. The new value of {W} is
used to calculate the right-hand side of Equ. (37) that
s solved for {U}, i.e., u;, v;, u, and v,. The
procedure is repeated until the solution converges to a

final value for each increment of load such that, the
error in w for the it iteration:

= i (-1
Z I W; =w; I

=
g=1

= S vYWae) (38)

in which N is the total number of nodes in the grid,
where v is a prescribed small positive number to
represent the iteration tolerance.

It is found that the above iterative scheme will
converge only in the case of small deflection. When
deflections become large, the scheme will diverge. By
dividing the load to a number of increments and using
interpolated values of the lateral displacement w, the
iterative technique will converge faster to the correct
solution.

ILLUSTRATIVE EXAMPLES
Example 1

The purpose of this example is to study the effect of
the mesh size on the accuracy of the finite difference
method. Also, the effect of the spring coefficients K,
and K, on the behavior of the unit is included in this
example. The unit dimensions and properties are as
follows: a=b=150 ¢cm, h;=h,=0.4 c¢m, t=0.1 cm,
E=6.9x10° N/cm?, v=0.22, G;=100 N/cm?, and
K,=10% N/em?.

Table 1. Maximum reached load (g,,,,), maximum
deflection (w,,,,), maximum principal stress (ap) and
cpu time for different mesh sizes
(K, =K,=0).

(I*?/r::x)l(z) wmax'/w

max (rp‘/op cpu time
at max. load|at max. load| (hh:mm:ss)

[5x5] 04 | 0851 | 079 | 00:00:35 |
10x10| 0.8 0.940 0.878 | 00:06:09
12x12| 0.9 0.957 0.920 | 00:12:58
I5x15] 1.0 0.982 0.977 | 00:25:26
18x18] >1.0 | 0.990 0.984 | 01:10:54
20x20] >1.0 | 1.000 1.000 | 0L:51:52

*

Woax and o,° are the maximum deflection and
maximum principal stress for (20x20) mesh size.
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Figure 4. Central deflection vs. applied lateral load for different mesh sizes.
8.0 1 l 4[ Bl L i L 1 _l 1
— ] —
ﬂ—!
5
N 8.0 — S —
7)) s
= . .z -
7
7
55 F -
. _] 7 e Mesh size: 5x5
e
E P — — Mesh size: 10x10
=% T 7 —~ — Mesh size: 12x12 %_
I~ . — Mesh =mize: 15x15
; - — Mesh size: 18x18 |
——— Mesh size: 20x20
0,0 T | B R LA
0.0 Q.2 0.4 0.8 0.8 1.0 1.2

Figure §. Maximum principal tensile stress vs. applied lateral load for different mesh size.

Load (i\I/ em?)

Alexandria Engineering Journal, Vol. 33, No. 2, April 1994




KANDIL, EL-NAGGAR and SAKR: Nonlinear Analysis of Laterally Loaded ...

p— L i ! 1
g | N
Y — -
wn
5000 — -
5 - -
4 = -
g ~ -
3 4 L
= 2500 — -
& = N
e T T T T
[\] ) 10 15 20 25
Mesh size
Figure 6. cpu time vs. mesh size.
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Figure 7. Central deflection vs. applied lateral load for different values of the spring constants K, and K},

The effect of the mesh size on the accuracy of lateral the different mesh sizes. Also, included in this table
deflections and maximum principal stresses are shown are the ratios of maximum deflection and maximum
in Figures (4) and (5). The total computation time in principal stress of each mesh size compared to those of
seconds, cpu time, on Micro/Vax computer for various ~ 20x20 mesh size. As can be seen from this table for a
mesh sizes is shown in Figure (6). Finer mesh sizes 15x15 mesh size, the deflection and maximum
lead to better convergence through load steps and principal stress differ by about 2% of their correlatives
hence higher load levels can be analyzed. Table (1) obtained from 20x20 mesh size; however, the cpu time
reports the highest load level reached through the reduces, for the 15x15 mesh size, by about 77%.
analysis and the corresponding computation time for
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Table 2. Stress distribution in the x-direction through the cross-section at the center of monolithic, layer
laminated plates (g= 0.04 N/cm?).

Case G, : Stresses in x-direction (\N/cm?)
Nin?|  Section Bending stress Membrane stress Total suess
Layfoo | °li |
1!
—
| 0.05
|
n.]
w o
= .
s«l.
ol
| S
‘ 0.05
| — 0066
|
Bl
Lam | 300 {8 L
= &
8l
J .
‘ | 0066 0.255
(I 0073 0.234
| .
w].
g1l : 0088
IS -
lamj} 130 jo Q . = 008%
Sl -
B 00731 . 0.234
- Q2
|
Mon. |
ol . 0.0
|
. +
!__._.
Q2
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Table 3. Stress distribution in the x-direction through the cross-section at the center of monolithic, layered and

lami_nated plates (g= 1.2 N/cmz).

case] 91 secu Stresses in x-direction (kN /cm? )
Niem® o Bending stress Membrane stress Toul stress
| 0123
!
Hi.
Lay.j 0.0.y ©11 ‘
m.]i
o
- 0123
L 4.358 1026
s«.P
w o
° ﬂi —4.356
°l | g
' 4.35% 1.026 5.384
Lam.} 100
]
K.
w o
8_ = E::::
Lam.j 130 { © .
i«.}
all
[
]
Mon. w) |
o. ! R
| +
| 6265 0032 6.297
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Table 4. Stress distribution in the y-direction through the cross-section at the center of monolithic, layereda
laminated plates (g= 0.04 N/cm?).

G, . Stresses in y-direction (kN /cm? )
o Niem? Section Bending stress Membrane stress Total stress
0182
N.
Lay.} 0.0. e 0.182 _;,
| 0.182
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le 5. Stress distribution in the y-direction through the cross-section at the center of monolithic, layered and
laminated plates (g= 1.2 N/cm?).
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Figures (7a-7d) show the deflection at the plate center
versus the applied load for different values of the
spring coefficients K, and K. As can be seen both K,,,
and K}, have a significant effect on the deflection of the
plate. Also, increasing K,, reduces the effect of K.
Meanwhile increasing K, reduces the effect of K,,,.

Example 2

The purpose of this example is to study the effect of
the interlayer shear modulus G; on the stress
distribution through the plate thickness. The
dimensions and properties of the unit are as follows:

Size of the unit a= 50 cm

b= 100 cm
Thickness of each plate hy = hy=025cm
Modulus of elasticity of glass E = 6.9x10% N/em?
Poisson’s ratio of Glass v= 0.22
Interlayer thickness (if any) t= 0.075 cm
Out-of-plane spring coefficient K,= 102 N/em?
Rotational spring coefficient K, =0
In-plane spring coefficient K= 0

Tables (2) through (5) show the stress distribution
through the thickness in the x- and y- directions at the
plate center. This stress distribution is shown at load
levels of 0.04 and 1.2 N/em? and at different values of
G; (0, 50, 100 and 130 N/cm?). The following
conclusions can be obtained from the examination of
these tables:

1- At small load level (g= 0.04 N/em?, i.e., linear
behavior) there is only bending stress at the center
of the monolithic plate and the layered unit.
However, at high load level (g= 1.2 N/em?, i.e.,
nonlinear behavior) there is also membrane stress
due to large detlection.

2- The bending and membrane stresses in the top
plate of the layered unit with equal plate
thicknesses are equal to those of the bottom plate.

3- For a laminated unit subjected to small load level
(g= 0.04 N/cmz), no direct membrane stress
exists. Here, the lateral load is resisted by bending
action in addition to the shear forces transferred
by the interlayer. These shear forces cause normal
compressive stress in the middle surface of the top
plate and normal tensile stress in the middle
surface of the bottom plate. These normal stresses
are constant through the thickness of each plate
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and are named here as “indirect m
stresses.” The moment of resistance of
unit in this case (linear stage) is the &
moments resisted by each plate in addii
couple caused by the compressive anf
forces in the top and bottom plate; resp
4- For a laminated unit subjected to high I
(g= 1.2 N/cmz), the total membrane st
sum of the "indirect membrane stress" {
above and the "direct membrane stresse
large deflection. Here, the bottom
subjected to tensile membrane stress; how
top plate may be subjected to compr
tensile membrane stress according to theg
the "indirect membrane stress" Wi
compression and the "direct membrang|
which is tension.
5- As the shear modulus of the intera
increases, the unit becomes more stiffer,
total stress distribution approaches tha
monolithic plate.
6- The membrane stress in the short directi
rectangular plate having b = 2a is very]
compared to that in the long direction, H
the bending stress in the short direction is|
than that in the long direction.

CONCLUSIONS

In addition to the above conclusions obtaing!
example 2, the following conclusions can be
from the present research:

1- The present model is a useful tool for the noil
analysis of thin laminated units resting ond
supports.

2- The model successfully simulates the layereds
by equating the shear modulus and thickness
interlayer to zeros.

3- Finer finite difference meshes lead to f
convergence through load steps, and highe#t
levels can be analyzed than in the cases of o
meshes.

4- The spring coefficients K, and K, h
significant effect on the deflection and henced
stresses of the laminated unit.

5- At high values of K,, (exceeding about 10° N
the effect of K, on the unit deformatio
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negligible for the examples cited here. Also, at high [8] Reznik, P.L. and Minor, J.E., "Failure Strengths
values of Kj (exceeding about 10° N/cmz), the of Laminated Glass Units," Glass Research and
effect of K, on the unit deformations is negligible. Testing Laboratory, Texas Tech University,

(6]
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