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In this work the complex variable method of Muschelishvili for solving the biharmonic equation is applied
to problems of bending of isotropic thin plates by concentrated edge couples. The results of the method
as applied to plate problems by previous authors are presented first. These are then applied to the ellipse
by using the conformal mapping to circular plate subjected, respectively, to two bending couples, and to
two twisting couples, both applied to the ends of a diameter. Numerical results are presented in the form
of graphs. There are two cases (i) Elliptic plate under conformal mapping to circular plate, (ii) Cirular
disk plate (special case from (i»

Lurie [1] applied MuschelishviWs method [2] for
solving the biharmonic equation to several problems of
bending of circular plates. It was mentioned in the
same reference that the author has used the method in
similar studies earlier in 1928. Lechnitsky [3] further
extended the complex variable method to the study of
bending of anisotropic plates. An English exposition of
Lechntzky's results is given in Sokolnikoff [4].The
method of Muschelishvili and Lechnitsky's results is
given in Sokolnkift14].Using the method of
Muschelishvili and Lechnitsky, Morkovin [5] further
discussed in detail the bending of an anisotropic
clamped elliptic plate. By means of the same method,
Friedmann [6] solved several problems related to a .
large isotropic plate with a circular hole as well as a
circular ring plate. Methods using complex variables
have been applied to plate problems also by Stevenson
[7] and Seth [8].

In this research the complex variable method of
Muschelishvili is further applied to study the bending
of isotropic homogeneous thin plates, the boundaries of
which are subjected to concentrated couples. Plate
problems concerning concentrated edge couples have
not received much attention. One such problem was
discussed by Lechnitsky [3] in which a semi-intinite
anisotropic plate is bent by concentrated couples at its
edge.

The present method reduces in a simple manner the
problems of concentrated edge couples and forces to

limiting cases of the first boundary-value problem of
the plate theory in which the moment and shear
resultant are prescribed along the plate boundary. From
the derivation to be presented in this paper it appears
that the present theory may as well be applied to more
real and practical cases in which couples and forces
actually are distributed over small but tinite parts of
the plate boundary instead of being concentrated at
points on the boundary. The method also illustrates the
similarity between the plate problems to be
considered and their analogous ones in two-dimensional
elasticity in which concentrated forces in the plane of
a slice are applied at the boundary.

Small deflections will be assumed in the following
discussion of bending of thin isotropic plates. We shall
consider a free plate with concentrated external couples
or forces acting at a finite number of points along its
boundary. For convenience, concentrated couples and
concentrated forces will be discussed separately. It may
be seen that this does not restrict us from loading the
plate with both couples and forces at the same time.
The middle plane of the plate will be assumed to
occupy a region bounded externally by a single closed
curve and, in particular,by an ellipse (using conformal
mapping this is transformed to a circle).In [9], the
solved problem was on a circle and it will be shown
that our general case is reduced easily to the special
case of a circle.



When the middle plane of an isotropic homogeneous
thin plate free from lateral load is assumed to be in the
complex plane of z = x + iy as shown in Figure
(1), the differential equation for its deflection w in a
direction perpendicular to the plane has the form:

According to Muschelishvi, the solution of this
biharmonic equation may be represented in terms of
two analytic functions <I> I(z) and Vtl (z) of the complex
variable z.

w = 2Re [ zCPl(z) + Xt(z)]

Xt(z) = Iwt(z) dz

We use bars to denote conjugate complex quantities.
The bending moments per unit length Mx, My,
twisting moment per unit length Hxy and the shearing
forces per unit length Qx, Qy may conveniently be
represented in terms of <1>1 (z) and 1ft (z) as follows

in ~hich D = 2Eh3 /3(1 -;) is the usuaI t1exural
rigidity of plate,E, v and h are Young's modulus,
Poisson's ratio and half-thickness of the plate
respectively. It is to be noted that Hxy has a sign
opposite to that of Mxy as used by Timoshneko [10].
As shown in Figure (1), the moment and shear
resultant per unit length along the boundary C of the
plate will be given as functions of the arc length s
along C

aHyS (3)M =m(s),Q +-- =P(s) one,
y y as

where v denotes the exterior normal to C. The
boundary condition may be shown to have the tinal
form

in which n = - (~)
1 - v

s s
f1 +if2= 1 f [m(s)+i f P(s)ds](dx+idy) (5)

2D(1-v) 6 6

The plate problem in which the boundary moment and
the shear resultant are prescribed now becomes one of
determining the two functions !PI (0 and lfl({) which
satisfy the boundary conditions, equation (4). Once
these functions are determined, the deflection, moments
and shearing forces at any point in the plate can be
computed using ;equations (1) and (2).

The foregoing results are due to Lechnitsky and may
be found in references [3], [4] and [6]

map the boundary C of the given region occupied by
the middle plane of the plate in the z-plane into the unit
circle'Y in the {-plane[ll]. Curvilinear coordinates (p,
8) are thus be introduced into the z-plane which are the
maps of the polar co-ordinates in the {-plane given by
: { = p eifJ .



Introducing the mapping function w(~) into equation
(I),where w(O is a rational function, we now have the
deflection of the plate given by

where

cI>(~)=cI>l[<u(~)]=cI>l(Z), X(~) =JW(~)w(~)d~

and

The moments and shearing forces at any point in the
plate referred to the new coordinates (P,O) may be
shown to be related to those referred to the (x,y)
coordinates as follows

in which a is the angle between the x and p-directions
at the point. As was shown by Muschelishvili [2]

eic = w(~)~
I w(~) Ip

= w(~) ~
Wl(~) p2

Mp + M. '" D (l+v)&[<II(~)]

M,-Mp+2iHp&=4D(1-v) ~2 _ [;;)(O<ll'm + c.>'mv(m
p2c.>'(~)

Q _ j Q •• _ 8 D ~ ~'(~) (7)
p & plc.>'(~)1

in which T(~) = t'm . ~m = <II'm
c.>'m c.>'m

in which f1 + if2 has also been transformed and is
ill

now a function of (J =(e), namely the value of ~ on

the boundary 'Y of the unit circle.
For a region bounded externally by a single closed

curve and mapped onto the unit circle in the ~-plane,
each of the two analytic functions </>(~)and l/;(~)can
always be represented by a power series consisting
only of positive powers of ~. Furthermore, because of
the indeterminacy of functions, we may write.

where al' az ... , ao , a'l , a'2' ... are real unknown
constants.

The boundary condition (8) may be reduced to an
integro-differential equation for the determination of
</>(~)and l/;(~). If we multiply both sides of (8) and its

conjugate by ~ do where I ~ I < I and
21tl 0 - ~

integrate over 'Y, we get by Harnack's theorem [4].

Once a solution of (10) satisfying the condition
W(O) = 0 is obtained,function l/;(~)may be calculated
by Cauchy's integral formula from (8). The value of
l/Ia) is determined by forming the conjugate of (8).
Since w(O is a rational function:

1 [ 1 J f1 +if2 Il ]cI>(~)= - -. (--) do - 'E Km~m
n 21tl y 0 - ~ mal



- 1
f -~ w(-) n

tlr(~) - 1 f( I ~ d - ~'(~) + ~ K ~-m
'I' •• - -2' (_~) 0 ~(~) <P.. LJ -m '

'ltl yo.. w •• m~l (13)

and note that. -1-f 4>( 0) do = 0
21ti (0 - ~)

y

where

and the constants C" ~""""""Cn depend on the
coefficients of w(~) and

[
1 d 1 ffl +if2 1 1[ d D ]al= --(-. --·do) - - -L ~~m (15)
n d~ 21tl 0 -~ n d~t=l '_0y ~=O ~=v

Genera! formulas given in this section enable us to
evaluate y?(~) and 1f(~). The bending moment and
shearing force may be evaluated from equation (7). It
is easy to obtain the results of[ 9 ] if w(~) = R~.
We shall study a special case by using the following
conformal mapping to transform the elliptic plate into
a unit circle :

z = wen = 1', ~+1'3~3 (1'1,1'3are real numbers) (18)

with 1', = 1.0826b, 1'3 = O.0959b
Substituting equation (18) into equations (12, 13,14,
15, 16 and 17) we obtain:

4>(~)=..![~ffl +if2da -(K e+K ~)] (19)
n 2m 0 _ ~ 3 1

Y

- 1
If-if w(r)cP(~) K K

f 1 2)<1 •• -1-3
w(t)=21ti (o-t a--W-'(-t)-+-t-+~

y

Since the coefficients of w ( n are real numbers, then
K, = K, , K3 = K3 and the even coefficients equal
zero because w ( n contains odd coefficients only.

i. Plate subjected to concentrated edge
couples

In the absence of shearing forces Ql" equation (5)
may be written in the form:

s

f1 +if2 = 1 f[M +iH J(dx + idy) (21)
2D(I-v) 0 v v

In Figure (2), a part of the boundary of the plate
between points A and B is shown, of which ds is an
element. All the moment vectors are shown in their
positive directions as determined by the right-hand
screw rule. The moments Mx(JI) and HyCu) represent
the x and y-components of the resultant moment per
unit length on ds, whose exterior normal is in the v-
direction. The relations between Mv' Hvsand Mill),
MyCu) may be readily established from the figure as

Mv cos (JI,y) + H"s COS (JI, x) = - Mx (JI)
M" COS (JI,x) - H"s COS (JI, y) = My (JI)

Multiplying the tirst equation by ds and the second by
ids, adding and remembering that cos (JI,y) ds = - dx,
COS (II,X) ds = dy
we obtain:

Substituting this into the integral in equation (21) and
applying the resultant to the finite length of arc
between A and B , we write

in which indicates the increase in the value of 1'1 + if2
as the boundary is described from A to B.
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couples M1*, M2*, ..: M*r' on i~s boundary at the
points where (J1 = e10!1, (J2 = e1a2, ... , on the unit
circle (0 ~ al ~ a2 < .... < ar < 211"),
respectively. A similar problem in the two-dimensional
elasticity was discussed by Muschelishvili [2]. It is
evident that the couples must fulfill the equilibrium
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Consider now the case of concentrated couple M*
(the star indicating that its dimension is not that of
moment per unit length but simply that of moment)
acting at a point P on the boundary and having
components Mx* and My*. We enclose P with a small
but finite circular are A-C-B as shown in Figure (3).
Applying equation (22) and letting A and B approach
P, we get

[f if] 1 [M* iM*] M*
1+ 2P"'2D(1-v) x+ y =2D(1-v)

Observing the physical significance of the integral in
equation (22), we see that the limiting procedure
adopted is justified. We conclude, therefore, that on
crossing the point P along the boundary in the positive
direction, the function f1 + if2 gains a value equal to
the concentrated couples at P divided by 2D (1 - v).
With the value of f1 + if2 assumed to be zero at an
arbitrary starting point on a closed boundary, its value
at any other point will be equal to the sum of the
concentrated couples acting between these points
divided by 2D(I-v). It should be noted, however, that
in going from the first point to the second, the positive
direction of s is to be followed.

As an example we consider the problem of a plate
under conformal mapping as being a circular plate
subjected to an arbitrary number,r say of concentrated

r r

condition L M: = L (M:X + iM';') = 0
K=1 K=1

According to this and the above conclusion we obtain
Table (I) for the values of the function f1 + itz, on
various arcs around the circumference of the plate,
assuming its value to be zero on arc (Jr (J 1•

Arc 2D(l-v)(f1 +if:0

(Jr(J1 0
(J1 (J2 M*1
(J2 (J3 M*+M*1 2
... ...
... ...

(Jr_l(Jr
M1* + M2*···M*r-l(Jr (Jl

* * * 0M1 + M2 ... Mr =

01---r----------------X
•
I•
I
I

I·I•
I
I

I
I

I
I

I
y

Figure 3. Concentrated couple at the boundary of the
plate.



1
21fi I

fl + if2 1 (JI2 fl + if2 1 (JI3 fl + it2(--)da = -. (--)dO' + - (--,dO' + ... +
O'-~ 21fl O'-~ 21fi (O'-~)

'Y (JI 0"2

(JI

1 I f I + if2 1 1 [M :!r,og0'2 - ~
...+_ (--)dO'=- --- }1

21fi O'-~ 21fi 2D(I-v) 0'1 -~
(Jr

where the values of K1 ,K3 are calculated from
equation (14) using equations (15,16, and 17)
It is easy to evaluate the deflection, the moment, and
the shearing forces under some conditions: (i)the plate
is sujected to two bending couples and (ii)the plate is
sujected to two twisting couples.
i. Plate subjected to two Bending couples

In t.lJ.isproblem the plate is subjected to two equal
and opposite concentrated bending couples each of

magnitude M and acting at the ends of a diameter, as
shown in Figure (4). Taking

and substituting these into equations (23), and (24), we
obtain the following analytic functions



-M l-~ 1 3
q>(~)= 41tD(1 - v)n log( 1 + ~) -;Os ~ + kl~)

1f(~)= M log(l-~)- FAl~ + 3C3A2F~
411"D(1 - v) 1+ ~ n(1- ~2) n(1 + 3C3e)

3A3~
+

n(l + 3C:3e)

X(~) = J W(n1f(~)d~=1'1Xl + I'3X3

Xl (n = J 1f(~)d~ X3(~) = 3 J ~21f(~)d~

F ~ 1 - ~ FA4 2 L4 2Xl(~)=-log(-)--log(l-~ )+--log(1 +3C3~ )
2 1+~ 2 2nC3

F~3 (1-~) FL4X3(O=-log-- - -log(l-e) - L3Iog(I-3C3e) +~e
2 (1+~) 2

__ (n_-_C_3_)_F_ & F =
(n2 + nCl - 3Ci)
(n + Cl - 3C3)F

3(n2 + nCl -3Ci)

M
21rD(1 - v)

(n + Cl - 3C3)al
3(n -C3)

A = (1+C3) &A = 3ClC3 C
l

= 1'3c; = 'Yi-31'~
1 (l +3C3) 2 1+3C3 1'1 I'~

AlA3 = Cl(K3 - C3 K1) & A4 = (1 --)
n

Kl =a1C1 +3a3C3 & K3=a1C3 and K2=0



C - )'3
, 1--

)'1

MMe = -[(n + l)Rell + Re(l2 + 13)]
1r

kf = ~(n + l)ReI 1 - Re(I2 + 13)]
1r
MH,;e = -1m (I 2 + 13)
1r

11
= <p(~)

Fe [w~~)<l>(~)]
(35)

12
p2w(~)

13 = e [ w~O ~(O]
p2w(O

We calculate the deflections, moments, and shearing forces for the elliptic plate under conformal mapping into
a circular plate using equations (6,25,26,30, .... ,35). As a special case, the disk may be studied taking)'3=O , the
results in [9] are recovered. Calculations are made for points along the radii 0 = 0 and () = 1r/2 as well as along
the circumference p = 1 between the angles 0 = 0 and () = 1r12. Along the radius () = 0 , we have ~ = p.
Substituting the calculated values of the functions l{) (n and x(n from (25, 26) into equation (6) we get:



MYI 1 ~
(w)O =0 = -21r-D-(-1--v-}(n -1){ (l -p) +C3(1 -p-')} log(l-p)

+ (2. -1){ (P + 1)+C3(l +p3)} log(l +p) +b2p2 +b4p4 +b6p6]
n

(w ) =0
0=0
p=O

(w) = MYI [(2. - 1)(1 + C3)log2 + 2.(b2 + b4 + b6)]
0=0 1rD(l - v) n 2
p =1

- 2K1 + 2C3~
b2 nF F

- 2
b4 = nF (K3 + K1C3)

b6 = - ~(K3C3)

./

/

.// I
Y i

z
Figure 4. Plate subjected to two binding couples.

The difference between the two values represents the
maximum deflection of the plate. Substituting 4>(~) ,
4>(n and ~(n from equations (31,32,33) into equation
(35)

where wl(p) = (Yl + 3Y3p2) we obtain:

Re(I1)0=0 =_, 1_ [ 1 __1 (3K3p2 +K1)}38)
w(P) n(1-p2) nF

R (I) - 2pw(P) [1 3Y3e 2 0 -0 - --- ---- -----
- (w(p»2 n(1-p2)2 n(1-p2)w(p)

(39)
3(y1K3 - Y3KI)]

nFwl (P)

1 -1 A1(I + p2)
Re(I) - [ ----

30=0- w(P) 1-p2 n(1-p2)2

3YI L4(Yl - 3y3p2)
+-------]

nF[w(p)f

Substituting equations (38,39 and 40) into equation (34)
to evalute (Mo),(Mp) and Hpo ' the values of Qo and
Qp obtain from the third part of equation (7) and by
equation (33) we get:

3(Yl K3 - Y3Kl)
-----]

nw(p)F

Similarly, along the radius e = 1r/2, we have ~ = i p,
and w' (ip) = YI - 3 Y3 p2 = w' ( - i p)



(w) ..-= _M_'Y_I_[2( -!. + 1)(P - C3p3 )tan-Ip
e=2: 21rD(I-v) n

To obtain the values of (Me)e=1r/2 ,(Mp)e=1r/2 and
(Hpe)() = 1r/2 using equation (35) to calculate

3{YtK3 - Y3K!)

n <.'>{ip)F]

Re(I " - 1 [_1_ +_A_1{_I_-_p_2) __ 3_L._(Y_I_+_3Y_3_p2_)Y_I]
:Je-2 w'{ -ip) (1 + p2) n(I + p2f nF( <.i>(ip»2

(45)

and substituting their values taking into account that
(Me)e= ..-/2 ' (Mp)e=..-/2 and (Hpe)e=..-/2 in equation
(34), as in [9], if "13 = 0, and from the third part of
equation (7), and equation (33), we obtain:

3"13

n(l + p2 )w(ip)

3('Y3KI - "II K3)
+ oF w(ip) ]

(Qe ) =0 , (Hpe)e =~ =0
e = ~ 2

2

Finally, along the circumference p= I, we have ~=a

and I wI (a) 1
2

= ['Y~ + 9"1; + 6'YI'Y3COS2()]

My 1 1 __-2 °{ L _ -2 6 3)21 2 6(w) 1=---[,(--I)COl>-I+C3(~-- ogC«!l-
p. 21tD{I-v) 11 2 2 2

(1 1)' 20{1 C(3 .:2 O)2}1 • 26+- - Stn- + -sm - ogsm-
11 2 3 2 2

+(1. + I)!:sin6 [1 + c3(4cosZe - 1)] (48)
11 2

+2(1. - 1)(1 + C3)log2 + b" + b222c0s26]
11

Similarly, for p= I we calculate (Mp)p=1 ' (Me)p=1
and (Hpe)p=l from equation (35) to get:

"II I + 3C3(4cos2() - 1)
Re(Il)p=l = --[-------Iw!2 2n

1--[K1 +9C3K3+3(K3 +C3KI)cos2()]]
nF

(49)
2YI I+C3c0026 3<;{3y;(4c0526-1)-Y;+4YIY3}

Re~) =.--[----.--'--------~
p.1 Iw'(o) 12 -4nsin2e 201 <':>(0) 12

+ 3(C3K1-K:J{y;+4YIY3 +3Y;+(Y~+3Y~(2e)}]

nFl(<.i>(o) 12

Y 1 1 + 3C3(4cos2e -1) A1cos26[l + 3C3(1-4sinzeJ
Re~p'l ~ I w(a) 12 [2 2nsLTtze

3L.[(y:-9y~6 + 6Yly~26]
+-------~-]

n I w(a) 12 F



y I -(1 + 3<;(1 - 46inZO»)oos9
' ••(1,)'_1 •• 1 ~(a) 12 [ 2sin9

A1oos[l +3<;(~-l)] 3L4sin26(yi-9y~-6YIY~
--------+-------]

2nsin9 nF Iw(a) 1
2

(53)
Using equations (49,.... , 53) into equation (35) we
obtain the values of the moment, twisting moments
and shearing force at p = 1 from the third part of
equation (7) and equation (33) , it is easy to get:

8 MY1 [ - (1 + 3C3cos2 8)

I W 13(1 - v) 4n sin2 8

3C3{(6y 1Y3 - Y~ + 9y;(4cos28 - I)}
----------(54)

2n Iw 12

3(K3 -C3K1){6Y1Y3 +(yi + 9y;)cos2 8}
----------]

nFI W 1
2

(<4) = 8MYI [3C3CQi9 _~(yi+6YIYJ+9yi(4ca>ZO-3)1

p-I 1 w(a) 13 2nsin6 2n&in91W 12

_ 3(K, - c,K1)(yi - 9vi>sua 6]

n I w(o) I~
(55)

When poisson's ratio J1 =.3 the corresponding value of
n is - 4.714. Some more interesting values for

(w)/1 =0 ' (w)/1 =~ , (Af;)/1=~ , (~)/1 =~ , and (~)/1 =~
2 2 2 2

have been computed numerically, the results are
plotted in Figures (5,6,7,8, and 9) which include the
results of the special case of Yuaw [9].

, i ~ . ........,:Jarrm~:•. g: -1
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p

Figure 5. Deflection versus radius (for the case of
bending couples).
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Figure 6. Det1ection versus radius (for the case of
bending couples).
ii- Plate subjected .to two twisting

couples

This second problem can be worked out in same
manner as the tirst, we have:

M;=Mat01 =1&M; = - Mat 02 = - 1
as shown in Figure (10) M being the magnitude of
each of the two twisting couples applied at the ends of
a diameter of the plate. Substituting into equations
(19,20) we get:

cp(~)= -iM log( 1-~ ) _i~~3 + K1~)
41tD(1-v)n 1+~ n

1J1(~) = iM log( 1 - ~) _ iFA1 ~

41tD(1 - v) 1 + ~ n(1-~2)

3iL4~
n(1 + 3 C3~2)
;,----

i _ :>-,.-<) Jarrmal • R
! ) ....• ) 'Jarrma1 •. ·ij~2:). b j

i
1 !

'- j:)I;'-~.-' -.;.--.-v-_.~._ _.=-~

p

Figure 7. Bending moment versus radius (for the
bending couples).
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Figure 8. Bending moment versus radius (for the
bending couples).

Along the radius O=O(w)O=O =(MO=O)=(Mp)

8=0= (Q)8=0=0. As before, from equation (35), we
get:

3(Y3Kl - y1K3)
+------]

nFw(p)

i :>-.-<> ,alTtll<'. 'li' __4: 1arrrnc.i. ~(!.'!2t30
I ••.~.

! ,; !
1.,;' 1

0~ 10

p

Figure 9. Shearing force versus radius (for the case
of bending couples).

Using (58) & (59) into the third part of equation (34)
to evalute (Hp8)e=o, we also obtain (Qe)e=o as:

(Oe) = - 8M p [1 3Y3
8-0 1t(1-y)n(w(p»2 (l_p2)2 (l_p2)W(p)

3(YIA; - yK1)
+-----]

nFw(p)

/
/

I

I
I

I
Z

Figure 10. Plate subjected to two twisting couples.
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(W)e =~=(A1j)e =~=(Op)e ~~=O
222

We obtain the same values when 1'3 = 0 , using
equation (35) , we get:

Substituting equations (61)&(62) into equation (34) to
evaluate Hpe and Qe using the third part of equation
(7)



(63)
31'3 3(1'3KI-1'IK3)

+----------]
n(l +p2)w(ip) nFw(ip)

Along the circumference p = I between 0=0 and
O=7r/2 we get:

My, 1 1t
(w)p=1 =---[(1 +-)-cosO[l +C3(l-4cos20)]

21tD(l-v) n 2

Substituting into equation (35), the values of 4'(p),
4"(P) and '1'(p), we have:

1'1 cosO[1 +3C:3(l-4sin2 0)
Re(Il) _I =---[-------

p - I wi (0) 12 2nsinO
(65)

3
+ nF (K3 - C:3KI )cos20]

~..rr) 1 C,cos6 -3C,cos6[4YIY' -y;+3y~(l-4sin26)]
£"""2 =--;[------------

p_1 1 (0)/(0) 12 2nsin6 2nsin6 I w 12

3{(C3K, - K,)(y; - 3y~} sin26
---------]

nF I w(o) 12

(66)

I
· _ 1 +C3cOS20 41'11'3+31'~(4cos20-1)
m(I2)p=1 -----+--------

2nsin20 2n I w 1
2

6(K3 -c 3KI )[41'('(3 + C''(i +Jy~)cos20]

nF 1 w 1
2

1 +3C:3(l - 4sin2)]cos 0
Re(l3)p=1 =[---2-' -0---sm

AlcosO[l +3C:3(4cos20-l)]
+---------]

2nsin 0

AI cos20[1 + 3C3(l - 4sin20)]

2nsin20

3L4 b~ - 91'~ - 61'11'3cos20}sin20
+ -------------l

nF I weer) 1
2

Using equations (65, ,69) into equation (34) to
evaluate (MO)p=l, (Me)p=land (HP.O)p=l, by using the
values of (4"(P))p = I into the third part of equation (7)
we get I

3c3{Yi +6y 1Y3 +9y;(1-4sin20)}cos6
--------- (70)

2nsin8 Iw(o) 12

3(C3K1 - ~(9y; - y~sin28
+----------]

nF I w(o) 1
2

8My, 1 + 3C3 cos 28
(Oe)po' = 3 [ 2

n(l - y) Iw(o) I 4n sin 6

3e3{ y; - 6Y,Y3 - 9y;(4 cosZ 6 - l)}

2 n 1 w (0) 1
2 (71)

3(C3K1 - K3){yi +6Y1Y3 +9Y;(l-4sin?O)}cosO
+--------------]

nFlw(o)12

Numerical values of some of quantities in equation
(62) and (~e)p=1 ' (kfj)p=1 and (Qu)p=1 have been
computed for the case in which JI = .3.They are
plotted in Figures (11,12,13 and 14). We also evaluate
the case of YI. Yuan (1'3=0).
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F1gure 11. Deflection versus angle (for the case of two
twisting couples).
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F1gure 12. Twisting moment versus angle (for the case
of two couples).

F1gure 13. Bending moment versus angle (for the
twisting couples).
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F1gure 14. Shearing force angle (for the case of
twisting couples).

Solving the integro-differential equation, by using a
rational, we obtain two analytic functions in the general
case. We stuied an ellptic plate as special case. It is
easy to apply our results for any shape transformed this
shape with conformal mapping to a unit cirle, which
subjected to concentrated edge couples. ALso the
appliation can be applied to the structure building and
mannfactory.
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