SOLVING TWO DIMENSIONAL STEADY STATE CONDUCTION
EQUATION WITH DIFFERENT BOUNDARY CONDITIONS
USING MONTE CARLO METHOD

M.M.Elafify and M.Naguib Aly

Nuclear Engineering Department, Faculty Of Engineering,
Alexandria University, Alexandria, Egypt.

ABSTRACT

During reactor thermal operation, the temperatures of the most doubted hot spots need to be estimated
without solving the complete heat conduction equation in a two dimensional problem. A technique using
finite difference method and Monte Carlo method is introduced for the evaluation of these temperatures.
First, the finite difference method is used to represent the heat conduction equation with an arbitrary
volumetric thermal source strength. Second, a discrete set of probabilities for both inner and boundary
nodes are determined. A tally is used to follow up the temperatures of the most doubted hot spots.
Although the method is time consuming on the computers, it is very powerful for complicated multi
boundary conditions problems. A statistical study and error analysis are introduced to evaluate the degree
of confidence in the resulting temperature values. The method is powerful if applied with supercomputers

and multi-processing computers.
INTRODUCTION

Steady state conduction processes are of interest in
fie continuous operation of many systems such as
fimaces, ovens, reactors, and buildings. Interest
| generally lies in the temperature distribution and in the
umergy losses that occur across the walls. These can
hen be linked with the proper control and operation of
e system. The determination of the energy loss is
dso important in considerations related to thermal
isulation and to the heat input needed for the system.
' many cases of interest, complex boundary
| wnditions, arbitrary geometry of the conduction
region, and material property variation with
femperature complicate the problem. Numerical
‘methods then become a must to obtain the information
needed for analysis and design.

The most popular techniques for solving such
¥uations are,

() finite element method [1,2]
(i) finite difference method [1,3,4]

(i) Finite element methods:

A finite element method is a mathematical procedure
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for satisfying a partial differential equation in an
average sense over a finite element. All of finite
element techniques require that an integral
representation of a partial differential equation be
constructed. The approaches  include variational
calculus, methods of weighted residuals, and moments
of energy balance [1,2]. The solution requires a well
defined sequential process. first, the domain is divided
to discretized elements. The number, type, and
allocation of elements are often arbitrary. Second,
interpolation or shape functions are selected for the
elements. Third, the matrix equations for an individual
element are formulated using the integral statement for
the element as a guide. Fourth, the matrix equations
for the overall system consisting of all the elements are
assembled. Fifth, the global equations are solved. For
steady state problems, the system is solved for the
nodal values of temperatures [1,2,3]. The flexibility of
the finite element approach permits the development of
general - purpose codes. Many such codes are available
for direct usage. [2]
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(ii) Finite difference methods:

The finite difference method has been one of the most
widely used numerical methods for decades. Its
popularity may be due to the fact that mathematical
concept of its discretization is relatively simple.
Discretization is defined as an approximation procedure
in which a continuous domain is replaced by a network
or mesh of discrete points, and the field of unknowns
are sought only at these discrete points rather than
every where in the domain [1,5]. First, the domain is
divided into discretized nodes. Second a suitable finite
difference scheme is chosen to represent the partial
differential equation at each node. This procedure
results in a set of linear algebraic simultaneous
equations for the network. Third, solving this set of
equations gives the temperature values at the nodal
points. Many methods are used to solve the resulting
set of equations like, iterative methods [5,7], and direct
methods [1,5]. As the network nodes number
increases, the solution needs a large computation
memory and a massy computational CPU time.

Problem statement and method of solution

The steady state conduction equation in cartesian
coordinates takes the form

3¢
e 9 & 5= —(k

)+q =0
where ¢ is the temperature, q”’’ is the volumetric
thermal source strength, and k is thermal conductivity
of the material. Finite difference schemes are
frequently used to approximate such equation. The
result is a set of linear algebraic equations for nodal
unknowns with information from a continuous medium
replaced by information at discrete nodal points. The
difference equations can often be solved under
conditions when differential equations themselves
cannot be solved by exact or closed form analytical
procedure. The difficulty in solving finite difference
equations arises in the application of complex
geometric boundaries.

The general form of finite difference using control
volume technique in an inner node is,

Kio1,i(0io1 =9 j) +Kiu1,j($i01,;795 )
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Defining
K;; = Kijq + Ki;i-}.l +Kip1y + Ky

then,
d’i,j:bd’l- g KHI’J i1,
Ky K
ot it it ij+1
Ki; Ki ;
+ S (i)
where
m
s Gj) = L_2%4Y
Ki.j
Km = ___..__1__._
" R[(m,n),(3,))]
Where

K., =the thermal conductance between nodes (
and (i,j).

R[(m,n),(i,j)] = thermal resistance between node(;
and node (i,j).

(m,n) = one of the nodes surrounding node (i,j)
The conductance matrix is a symmetric do
diagonal matrix [3]. It is needed only to generate
of the matrix elements and the reset is generated
symmetricity property.

Probability formulation
The problem turns to a set of linear equationst

solved numerically. These equations can be wri
the form,

. 9ij = PD (i,j) ¢;.1;+PU (i) 941
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+ PL (i,j) ¢;;.1+PR (i.,j) $ij+1 1S W) 3

The coefficients of temperature can be viewed as
Giscrete probability set for random walks of a fictitious
(seudo) particle.This is shown in Figure (1). These
nndom walks start at the point of interest for which
the temperature value is estimated. The random walks
ae terminated at specified temperature boundaries
tither for the medium or convective coolant at the
boundary only. Steps in the walk from one node to an
wljacent node in the lattice points are taken by random
umpling techniques from the finite difference
tquations. A tally is made for each walk, from which
 the solution ¢, ¥ is estimated [6]. The tally depends on
- thetransition probabilities between successive points of
the random walk, the source term at each point, and
the boundary condition of the problem. The discrete
probabilities are

PL (i) = —i!

. K
PR (i,j) =

PD (i,j) =

K. .
PU (i,j) = L

qi/’;/ AxA

S (i,j) = Y (for inher node)

i,j
But for specified heat flux boundary node, the source

ferm is given as,

qjAxAy +heat added throught the boundary

)=
P Ky

An illustration for these probabilities for an inner node
i§ given in Figure (1).
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Figure 1. Probability distribution around node (i,j).
Tally and Temperature calculations

let a fictitious particle start a random walk at the
point where the temperature is required to be
estimated. The conditions of the walk are that if the
particle is momentarily at the arbitrary point the
probabilities of stepping to one of the surrounding
adjacent nodes are PU, PD, PL, and PR respectively.
When the particle moves to another node the source
term of the node is added to the tally and the four
probabilities of the new node are used for the next
random walk. The walk is terminated at specified
temperatures and convective boundary only. This
procedure is considered as one history. If the
procedure is repeated by generating more particles at
the starting point and performing the random walks up
to n-times, then the average value of the tally is
considered as an estimation of the required
temperature. A flow chart of the used program is
shown in Figure (5).

Boundary conditions setting:

Spatial boundary conditions in heat transfer problems
are of three types,

(i)  Dirichlet function boundary condition,

¢ =1f; (x,y) on §; (Specified temperature
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boundary)

(i) Neumann gradient boundary condition,
0¢ _ .
¥ =f,(x,y)on S, (Specified heat flux)

(iii) Mixed boundary condition,

a xy) ¢ + b (xy) %=f3(x,y) on
S3(Convective boundary)

iB+1,iB
iB,jB
iB.jB-1
¢B
iB-1,jB

Figure 2. Specified temperature boundary node (iB,
jB).

Where Sy, S,, and S; denote three separate zones on
the boundary surface S.

(i) Dirichlet function boundary condition:
This boundary condition is illustrated in Figure (2)

¢B = ¢o
The random walk is terminated when reaching to a
specified temperature without adding the source term

at the boundary cell. The tally Z;, of the random
fictitious particle i takes the form

Z, = ESm(i,j) +,
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iB+1,iB

iB,jB
iB.jB-1

Prrr1

. iB-1.jB
Figure 3. Specified heat flux boundary node (B

where the summation is over the total random wi
one particle till termination.

n
=Yg
i=1

where n = total number of particles generated i
(i,j) and m represents the steps moved in the hi
except for the boundary point. ¢, repres
boundary node temperature. Z is the summationg
tally for all histories. The temperature of the no
where the fictitious particle is generated; is theng

by,
¢id = —

The source term in Dirichlet boundary condit
termination node is zero.

S (iB’ jB) =0

(i) Neumann gradient boundary condition.
This boundary condition is illustrated in Figue
Assuming that the surface ,Sg , boundary k
specified heat flux, q", at the node [iB, jB]. The
of the finite difference equation for the node is,

¢;g 8 = PL(iB,jB) ¢;5 ;5.1 + PR(iB,B) ¢y
+ PUGB,JB) éip+1 5

+ PD(iB,jB) $B.1j8 S (iB, jB)



here PL,PU,PD, and PR have their usual meaning

}// Ax
q ——AY /
S(iB,jB) = 2 " ,4q 4y
KiB,jB KiB,jB
an= sum of thermal conductance of

surrounding nodes.
thermal conductance between node (iB,jB-
1) and (iB,jB)

iB+1,jB
Coolant at
temperature
iB,jB '»h

iB.jB-1
constant heat transfer
coefficient h

iB-1.jB
figure 4. Convective boundary node (iB, jB).

$0in Neumann gradient boundary condition the node
urce term is increased by the amount of heat flux in,
id the probability distribution is evaluated, then the
ik is continued. There is no history termination with
lisboundary condition. A special case of the specified
kit flux boundary is the insulated boundary condition
ihgre the boundary heat flux is zero. For example, the
surce term of the Neumann boundary node for
msulated boundary is similar to an inner node.

(ii) Mixed boundary condition

This boundary condition is illustrated in Figure (4).
Asuming that the boundary is a convective boundary
wndition at the node (iB, jB).The average heat transfer
wefficient is a constant h. and the coolant temperature
§¢;. The finite difference equation takes the form,

. 9pjp=PU(B,jB) $;p. jp + PL(B,jB) ¢;p 51

+PR(iB,jB) ¢y, + PD(iB,jB) ¢;5_; ;5 +S(iB,jB)

For this boundary condition the source term of the
tundary node is added to the tally, then a random
mmber is generated and compared with the
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probabilities estimated. If the generated random
number directs the fictitious particle to the coolant the
tally is increased by an amount equal to the value of
the temperature of the coolant, and the history is
terminated. Otherwise the random walk procedure is
continued for the same history by adding the source
term of the new node in the random walk

DISCUSSION AND CONCLUSIONS

The method has been applied to a 10m by 10m two
dimensional problem for the following cases,

(i) Four specified boundary temperatures with
50,100, and 200 generated particles.

(ii) Two specified temperatures, and two insulated
boundaries with 50,100, and 200 generated
particles.

(iii) Two specified temperatures and two convective
boundaries with convective heat transfer
coefficient ,h, of 100 W/m 2.°C

In these cases the specified temperatures are taken as
100 °C, while the source term is taken as 100
W/Cu.M.

The results are compared with the corresponding finite

difference solution. They show an error in Monte carlo

results less than 5% when 200 generated particles are
used.

The error decreases as the number of generated
particles per node increases.

Figures (6),(7), and (8) show the temperature
distribution versus X-position at a cross section y of

= 1m for different cases.

Figure (6) shows the temperature distribution for four
specified temperature boundaries. The error is
maximum for 50 generated particles per node. The
error decreases as the number of generated particles
increases. The maximum error appears at the central
nodes of the cross section. It is less than 10% for 50
histories, and less than 5% when 200 histories are
used. The percentage error drops as the number of
generated histories per node increases.

Figure (7) shows the temperature distribution in the
case of two insulated, and two specified temperature
boundaries with different number of generated
histories. Although the maximum error is still at the
central nodes, the agreement with finite difference
solution is excellent. The percentage error is less than
1% for 200 generated histories. This can be explained
on the bases of Monte Carlo method by the effect of
termination of the generated particles on the solution.
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The insulated boundary does not cause termination,
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tmination of the history. With the same number of
gierated histories, the more the tally is, the more

wourate the results are. If the same accuracy is
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Figure 5. Flow chart of the Monte carlo procedure for temperature evaluation.

required for four specified temperature boundaries, a
higher number of generated particles should be used.
This indicates that the accuracy is sensitive to boundary
conditions. The faster the history termination is, the
lower the accuracy is.
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Figure (8) shows the temperature distribution in the
case of two specified temperature, and two convective
boundaries with 100 generated histories. The inner
nodes show maximum error less than 10%.
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Figure(9) Percentage error versus number of generated particies.

Figure (9) shows the effect of increasing number of
generated histories on the error. The percentage error
decreases as the number of generated histories per node
increases.

Figures (10), and (11) show the solution surfaces for
both Monte Carlo and Finite Difference methods. They
show a good agreement of overall behavior of both
solutions.
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Figure 10. Temperature distribution using Monte(
method.

Figure 11. Temperature distribution using f
difference method.
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