ABSTRACT

Key words

amalysis, redundant logic circuits.

[.INTRODUCTION

Fault detection in logic circuits is testing the circuit
' bdetermine whether or not it functions correctly. The
pocess of fault detection terminates either when a
ufficiently large number of inputs is applied so that it
unbe certified that the circuit is fault free, or when an
groneous output is detected. Fault correction is the
pocess of finding the reason which caused an
groroneous output, and eliminating this reason. The
wolution of logic circuits from discrete components to
VLSI technology had a dramatic effect on both.

The problem of fault detection became more
wmplicated. While it was perfectly feasible to test an
$SI chip by trying all input combinations exhaustively,
this approach is not suitable for a VLSI chip with, say,
% inputs and 107 gates on the wafer, since in such
case an exhaustive test would require the generation of
i input combinations. This is too time consuming to
be practical. Fault correction, on the other hand,
became simpler. Circuits composed of LSI and VLSI
hips tend to exhibit modular structure, and they are
wmposed of a much smaller number of replaceable
wmponents [1]. This implies that it is sufficient to
tace a fault to a VLSI chip, which makes fault
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correction manageable. Fault correction is not included
in this paper, but it is treated in [2] which describes a
general algorithm for correcting an error in a logic
circuit.

Fault detection was treated in [3], [4], [9] and [10].
A relation between the number of test generations, and
the degree of confidence in test results (the probability
that the circuit is error free) is proposed. It was found
that to reduce testing time, it is required to achieve the
desired confidence (probability) with the minimum
number of test generations. Input patterns are generated
at random.

In [3] it was stated that if the circuit is to be certified
error free with probability P, one must generate M test
patterns, where:

= log (1 "P) 1))
log (1-py)

and P, is the probability of finding the error by

applying one input pattern only. The equation is
general and may be applied to any circuit.
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Since P is usually given, fault detection focusses on
finding the value of P; which minimizes M (the
duration of the test). Once P, is obtained, it is
substituted in Eq. 1 and M is calculated for the given
P. The random test is then conducted M times. If no
error is detected the circuit is certified error free with
probability P, else it is rejected as faulty. An
expression for Py is obtained for a non- redundant
NAND tree structure. It is shown that :

Ps - (Pol)n—l(Pll)n-l_“(PL_ll)n-l (2)

where:

P! is the probability of occurrence of logic 1 at
input of level k.

n is the NAND gate fan-in.

L  is the number of levels in the tree.

P! and P! are related by the following equation:

Pl = 1P, 3

From Eq. 2 it turns out that P, is a function of the
external input bias probability P,! which is the
probability of occurrence of logic 1 at level 0. In fact
substituting from Eq.3 into Eq.2 recursively, we may
express P, exclusively in terms of Py!. This suggests
that the input bias probability Py! has a direct effect on
the required number of test generations, since it
determines the value of P, which affects the value of M
as indicated in Eq.1. Thus it is required to find the
input bias probability which minimizes M. This issue
is treated in [4] for non-redundant AND-OR tree
structure. It is proved that this circuit structure has a
probability transfer function given by :

Py =[1-(1-P)""or
Py =1-(1-Pom @

where m and n denote the fan-in of OR and AND gates
respectively. Py and P, are the output and input bias
probabilities respectively. The circuit has a fixed point
when P = Py. It is stated in [4] that to minimize the
number of test generations M, the input bias
probability has to be equal to the fixed point bias
probability. This result is used here to find the
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minimum number of test generations M which
the required measure of confidence P. The ques
how to run the tests is treated in [S5],[6],[7],[l
[13].

This paper extends fault detection results of [
[4] to more general but non-exhaustive |
structures. The restricting assumptions of put
structure, and of nonredundant circuits are
Also, circuits of mesh structure with multiple]
are analysed. The effect of feedback on the ana
studied. !

The following simplified procedure is follows
circuit analysis :

Procedure (1):

1- Find the fixed point probability (if one exis
2- Set the input probability equal to the fixed]
probability. This, according to [4], minimix
length.
3- Calculate P, from the input probability obta
step (2).
4- Substitute P in Eq.1 to find M.
5- Apply M random patterns to the circuit.
6- If no error is detected the circuit is certifiedt
error free with probability P.
7- If an error is detected the circuit is reject
faulty. If the circuit is faulty, a fault cor
algorithm may be invoked (not treated in
paper). |
Relaxing the non-redundancy assumption,
consequences and a theoretical approach to ¢
with it are described in section 2, which develop
necessary tools for the analysis conducted in Se
Section 3 conducts the necessary analysis for diffy
circuit topologies. Section 4 compares betweel
randem testing and the exhaustive testing. Secti
summarizes the conclusions about the effect of cif
topology, feedback, redundancy, and multiple fan
the optimal selection of input bias probability
minimizes the number of test generations required
Issues of controllability and observability of
proposed topologies are not explicitly studied in
work, but for specific details [12] present]
evaluation of the computational complexity!
controllability and observability in combinati
circuits.



2 PROBABILISTIC ANALYSIS OF LOGIC
- CIRCUITS :

|

This section develops the theoretical basis necessary
for analyzing the proposed circuits of complex
fimcture. The section is organized as follows :
Sibsection 2.1 describes the problem resulting from
rlaxing the non-redundancy assumption. Subsection
12 builds the tools to analyse redundant circuits.
Subsection 2.3 discusses the complications resulting
fiom introducing feedback and derives a set of tools to
(el with these complications. Subsection 2.4
generalizes the developed tools so that they may be
aplied to multiple fan-in circuits.

21 Redundant Circuits

The approach taken in [3] and [4] to find probability
mnsfer functions of logic circuits assumes that all gate
iputs are independent. This limiting assumption
folows from the nonredundancy assumption. The
pobability of any joint event {{A} and {B}} is the
product of individual probabilities of events {A} and
{B}. That is:

P {A, B} = P {A} P {B} &)
where P {A, B} denotes the probability of the joint
went {{A} and {B}}, with events A and B denoting the
wcurrence  of high level (logic level 1) at
wrresponding lines in the circuit. Eq.5 may not hold
inthe general case of redundant circuits.

&

rJ

Circuit G
Y

Figure 1. Redundant circuit: case 1.
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Consider, for instance, circuit G shown in Figure (1).
According to [4] its probability transfer function is:

y=1-(-x»?

where x, y are the input and output bias probabilities
respectively. For a redundant circuit y=x.

Now, for the circuit shown in Figure (2), what is the
probability transfer function between y and z (z is the
input bias probability) ?

Since we know that y = 1 - (1-x?)? and noting that
x=z, we get:
y=1-(- z%)>. This, unfortunately, is not correct.
The correct solutionis y = z.

Circuit B

Clrcuit G

Figure 2. Redundant circuit: case 2.

Since, when the input to circuit H is 1, all its
outputs, which are inputs to circuit G, are 1’s. Thus
each AND gate in G has two 1’s on its inputs yielding
a 1 at its output. The three AND gates have a 1 at the
output, the OR gate has a 1 at the output too. Similarly
when the input to circuit H is 0, all its outputs, which
are inputs to circuit G, are 0’s. Thus each AND gate
in G has two 0’s on its inputs yielding a 0 at its output.
Since all three AND gates have a 0 at their outputs, the
OR gate has a 0 at its output too. Thus, when the input
to the combined circuit is 1, its output is 1, and when
the input to the combined circuit is 0, its output is 0.
Thus the output is always the same as the input, i.e.
the overall probability transfer function is y = z, not
y=1-(1-22°.

This conclusion is justified by noting that the outputs

B 19



FAHMY and ABDEL-ZAHER: Probabilistic Analysis of Fault Detection in Complex Logic Circuits

of circuit H, (which are inputs to circuit G) are not
independent. Thus the expression : y = 1 - (1-x%)?
for the probability transfer function of circuit G is no
longer valid, since it assumes that all inputs are
independent (see [4]). In other words, Eq.5 is not
satisfied. An additional approach should then be
proposed.

2.2 Tools for Analyzing Redundant Circuits

The goal of this subsection is to develop an
alternative to Eq. 5. It is required to calculate P {A,
B} in the case when events A and B are correlated. A
and B are correlated if lines A and B have a common
origin, i.e. they may be traced back to a common
signal (see Figure (3)).

i

e

Figure 3. Analysis of redundant circuits

It is to be noted that since A and B are binary events,
P {A, B} is also the cross-correlation between A and
B, denoted by R (A,B) :

R(A,B)=E{AB}=1x1xP{A,B}+ 1x0xP{A,§}
+0x1xP{A B} +0x0xP{A ,B} = P{A,B}
Thus, from now on, P {A, B} will be referred to by
correlation. P and R will be used interchangeably.
Note that in the special case where A and B are the
same event (which means that A and B are the same
line or two branches of the same line) we have :

R(A,B)=P{A, B} =P{A, A} =P {A} (6)

The steps to find the correlation between A and B,
R(A,B) are given in the following procedure:
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Procedure (2):

1- Find the common root signal C. _

2- From Eq.13 (to be derived later), fi
correlation of this signal with
R(C,C)=P(C).

3- Use a Correlation Propagation Law recu
(the law is to be derived later) to fi
correlation between the next pair of |
descending from the common root until sig
and B are reached and R(A,B) is calculd
them (see Figure (4)).

1. Find RCD
2. Find RED
3. Find REB
4, Find R

Figure 4. Steps of the analysis.

In what follows only two-input gates are stud
a gate has more than two inputs, it can be decom
into several gates each of which has exactly twoi
(as shown in Figure (5)). Subsection 2.4 extend
analysis to the case of multiple fan-in.
Theorem (1): (The Correlation Propagation Law);

D

O a wo»

D

N

I

s, ]

—::/’

iflpial g

Figure 5. Representation of a multiple fan-in gat

If X, X, are the two inputs, and Y is the outp
a gate, which implements the function given byl



it table in Figure (6-a), where d,...,d; have the
fibes 0 or 1, then for any external Boolean event A
e have:

+ Ry x24(d3-d0-d1-d2) )

is the correlation between the output Y
and event A.
define the truth table of the gate (see
Figure (6-a)).

_R,“ » Ryoa and Ry yna are the cross-correlations
iiween the respective input signals and event A.

XB%ZDAY

[ETo]es LI
ol e
1(ds lOldz

(a) ii?d,

(b}
Figure 6. Correlation propagation law.

:“Proof:

Since we are dealing with binary logic, then

by = Py, , but Py, is the probability that both the
pte output Y, and the external signal A are high. This
obability is the sum of probabilities of all minterms
frwhich Y=1 and A=1 in the augmented truth table
if Figure (6-b), i.e.:

=Px %2490+ Px 1x2 441+ Py %2 o +Px1x24d3(8)

from Set Theory we have:
Pxix2a = (Pa - Pxia - Pxoa + Pxixon)
Pxix2a = Pxoa - Pxixoa)

Pxi1x2a = (Pxia - Pxixoa) ©®
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Substituting from Eq.9 into Eq.8, and rearranging:
Rys = P4 d0 + Py, (d2-d0) + Py,, (d1-d0)
+ Pxixoa (d3+d0-d1-d2) (10)

and since joint probability and correlation are the same
for binary events, we may rewrite the above equation
as:

Rya = P, dO + Ry, (42-40) + Rypp (d1-d0)
+ Ry xoa(d3+d0-d1-d2)

which is the same as Eq.7. The theorem is thus
proved.

An interesting case results if event A is the global
event S. By replacing each A by S in Eq.7 the theorem
is rewritten as :

+ Ryxps (d3+d0-d1-d2) (11)
It will be proved that Eq.11 gives the output bias
probability of the gate. Replacing correlation for
probabilities (valid for Boolean signals only), and using
the fact that P,=1, Eq.11 reduces to :

Py = d0 + Py, (d2-d0) + Py, (d1-d0)
+ Py xo(d3+d0-d1-d2) (12)
= (I-PXI_PX2+PX1X2)d0 + (PX2-PX1X2)dl

+ (Px;-Pxix2)d2 + Py xpd3
Thus

Eq.13 is nothing but the output probability P, of a gate
having two inputs X; and X, and a truth table as in
Figure (6-a).

The above result is useful since it establishes a
duality between the Correlation Propagation Law and
the gate’s output probability. This duality is
demonstrated below by comparing Eq.7,12
respectively. The equations are rewritten here for
convenience :
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Rys = P, d0 + Ry, (42-d0) + Ry, (d1-d0)
+ Ry xoa(d3+d0-d1-d2)
Py = d0 + Py, (d2-d0) + Py, (d1-d0)
+ Py xo(d3+d0-d1-d2)

The following duality is observed :

Py — Rya Pxp — Rxoa
1 —  Pyx  Pxixo — Rxixoa
Px; —  Rxia

Thus we may obtain the Correlation Propagation Law
for a gate directly from its expression of output
probability by exploiting the above mentioned duality.

2.3 Tools for Analyzing Circuits with Feedback

In circuits with feedback, an output of some stage is
the input to a previous stage. In the block diagram of
Figure (7-a), the combinational logic circuit has the
inputs U ,...,U, and X, and an output Y which is fed
back to a previous stage. To calculate the bias
probability of X we need the bias probability of Y (and
Z), but to obtain the latter we need to know the
former. This subsection develops a method to calculate
the bias probabilities of both Y and X.

Figure (7-b) represents the truth table of the
combinational logic of Figure (7-a). It is required to
find the bias probability of Y from the information
given in the truth table.

The Total Probability Theorem states that [8] :

[ P{Y} = P{Y|mg} P{mg}+ ... +P{Y|m,} P{m14)

where mg , ..., my are partitions of the global event S.
mg , ..., my in Eq. 14 are the minterms (rows) in the
truth table of Figure (7-b). P{mg},..., P{m,} are the
probabilities of these minterms, i.e. the probabilities of
occurrence of the corresponding input patterns (U,
yoos U, X). P{Y |m;} is the probability that the output
Y is 1, given that the input pattern is defined by
minterm m; . The output corresponding to the input
pattern defined by minterm m; may be easily obtained
from the truth table. This output is either 1 or 0. Thus
P{Y|m;} is 1 or O accordingly.
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Removing from Eq. 14 the terms where P{Y]
0, only those terms for which P{Y |m;} = I
Thus Eq. 14 reduces to:

Py= L P{Y|m} P {m;}, where P{Y|mj} =1

Py= L P{m}.
Yy Y
: [
—*1 Two-Input X Combinatlonal Y
Gate Logic Circuit

(a)

Figure 7. Analysis of circuits with feedback.

The above expression is the summation
probabilities of all minterms m; for which Y=1i
truth table. All minterm probabilities have eithel
factor Py or 1-Py, since in any minterm there mi
either X or X.

Grouping the minterms in Eq.15 into two groups
containing X and the other containing its complen
we get:

Py = L P{m,} + P {mg}

where 7
ILP{m,} is the probability sum of minterms
X=1.
LP{m;} is the probability sum of minterms ¥
X=0. :
Minterm probabilities in the first group havel
common factor Py, while minterm probabilities inf
second group have the common factor 1-Py , i}

L P{m,} = PxH(u)
L P {m;} = (1-Py)L(u)

where H(u) and L(u) are the subsets of & P {m
IP{m;} respectively which are functions of inputsl
only (and not X). They are given exclusively in tem
of the probabilities of inputs Uy,..., U, .

We therefore may express Eq. 16 as :

Py = Py H@) + (I-Px)L@w (&

Alexandria Engineering Journal, Vol. 33, No. 1, January 1994



where H(u) and L(u) are defined implicitly by Eq. 17.
Alematively, the total probability theorem may be
iwritten as

Py = Py P {Y|X} + (1-Py) P {Y|X} (19)
e conclude from Eq. 18 and 19 that :

Hw) = P {Y|X}, L@) = P {Y|X}

L@ = P {Y|X} (20)

Thus to calculate H(u) and L(u) we may use Eq. 17 or
0.
Since X is the output of the gate in Figure (7-a), Y
ad Z are the inputs, Py may be given by (see Eq.
12):

Pyx=d0+P,(d2-d0)+Py(d1-d0)
+Pyz(d3+d0-d1-d2) 21
ad since Y and Z are independent, we have Py, =
Py ;. Substituting in Eq.21 we get :
Px = d0 + P (d2-d0) + Py (d1-d0)
+ PyPz(d3+d0-d1-d2) (22)

Substituting from Eq.22 into Eq.18 and solving for Py
we finally obtain :

L(u)+[H(u)-L(u)][d0+P,(d2-d0)]

e -[H(u)-L@)][(1-P,)(d1-d0)+P,(d3-d2)] @)

Eq 23,22 may be used to determine the probabilities of
Yand X respectively as it will be shown in section 3.
fq. 23 will be extended to the multiple fan-in case in
the next subsection.

2.4 Extension to Multiple Fan-In Circuits

In the previous subsections a set of tools were
teveloped to deal with complex logic circuits. This
Sibsection extends these tools to the case of multiple
fin- in. By multiple fan-in it is meant that the gates
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under consideration have more than two inputs. The
following discussion assumes that a gate has a number
n of inputs, where n=2.

To extend theorem 1 to the multiple fan-in case, let
the gate have the inputs X1,...,Xn and one output Y.
If all n inputs are independent then Py may be
expressed in terms of Pyxq,...,Px, and 1 only.
However, if subsets of the inputs are not independent
then P may also depend on terms like Py;y;, Pxixixic
and so on until lex xn- The Correlation Propagation
Law in such case is obtained by exploiting the duality
principle. Thus to establish the Correlation Propagation
Law for an n input gate, with inputs X1,..., Xn and
output Y, express its output bias probability Py as an
algebraic sum of terms : 1 (e.g. in case of inverter),
PXI 5 o le Xjr - PX.IXJ Xn (lf they eXiSt).
Replace these terms by PA o Rt e RXi...XjA’
Rx1x2.. xna respectively. The result is the output
cross-correlation Ry,. The only restriction is that A
must be a Boolean event. For example if :

By duality the Correlation Propagation Law is :

Rya = Pp - Rxixox3x4a-

In circuits with feedback (see Figure (7-a)), extension
to multiple fan-in means that the gate has more than
two inputs. This gate may then be decomposed into
two separate gates as shown in Figure (8). Eq.23 is
valid for gate 1. It gives the probability Py . The
probability P, , however, is now interpreted as the
output probability of gate 2. With this minor
modification results of subsection 2.3 may be applied
to gates with more than two inputs.

Gate 2

G‘tl
l Tvo-!nput
L'_____17 Oﬂt.

onbsuntlonal
Logic Cixcuit

Figure 8. Analysis of multiple fan-in circuits.

3. ANALYSIS OF COMPLEX CIRCUITS

This section is organized as follows: Subsection 3.1
is devoted for analyzing the redundant tree topology,
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subsection 3.2 analyzes the mesh structure, while

subsection 3.3 is for analyzing circuits with feedback.

The goals of the analysis in each of these sections are

the foliowing:

1- Find the probability transfer function of the circuit.

2- Determine the fixed point bias probability.

3- Calculate the path sensitization probability for a
path extending from the input to the output of the
circuit.

4- Determine the conditions which lead to the optimum
(minimum) number of test generations M.

(a) P Output Bias Probability

pUD

3.1 Redundant Tree Topology

This subsection illustrates the effect of redund
fault detection. Consider the circuit in Figur
The structure shown is replicated at each levelfo
a redundant tree topology. Redundancy comes f
fact that ¢ inputs are common to both OR gatesd
level. Each OR gate also has its own m indgp
inputs. It is assumed that the probability of
independent input is P, and that of each commo
is Py. The output probability is P, . Note thatl
(9-a) is functionally equivalent to Figure (9-b),

Input Bias Probability

p: Common Input Bias Probability

Figure 9. Redundant circuit topology.

The first step is to establish the probability transfer
function for the circuit, i.e. an expression for P in
terms of P, and P, . The problem is that signals X1
and X2 are not independent since they have a common
root. In such case, procedure 2 (subsection 2.2) must
be invoked to determine Py x, which is needed to
calculate Py (see Figure (9-b)).

First, define events A, B, C as :

A , at least one independent input to gate 1 is high.

B, at least one common input is high.

C, at least one independent input to gate 2 is high.

Since event {X1=1} is the ORing of events A and B,
and event {X2=1} is the ORing of events B and C, the

redundant part of the circuit in Figure (9-b) may
redrawn as shown in Figure (10) which
demonstrates the order in which the Correls
Propagation Law may be applied to the gates. |
order is expressed in the form of successive steps,
Starting with the known statistics :
Py,=1-(1-P)"
Pp=1-(1-P)°

1-(1-Pym

O"U
Il
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: : % 5
b RMI Ry :,L_:D_T..
B
c
.
) A e
Step 1 Step 2

fu e 10. Use of the correlation propagation law.

We find the joint statistics of the corresponding
mals, then in each subsequent step, one new signal
joonsidered, and its associated joint statistics are
deulated. This operation is repeated until the output
mal is reached. Note that if events are independent,
I¢ calculation of the joint probability (statistics) is
ial, thus we shall calculate the joint probabilities of
on independent events only.

Atstep 1 (see Figure (10)) signal X1 is introduced.
jand X1 have a common root. Thus, they are non
iependent. Their joint probability is obtained by
iplying the Correlation Propagation Law as follows.
The output probability of gate 1 is :

Py, = Py + Pg-Pup @7)

It is desired to find Py;p. Applying the duality
piesented in subsection 2.2 with B as external event,

Rx18=Pxi=Rap+Rpp-Rapp

Atstep 2 (see Figure (10)) X2 is introduced. X1 and
K2 have a common root. Their joint probability must
gain be determined by applying the Correlation
opagation Law. The output probability of gate 2 is :

Py, = Po + P - Pcp

Since it is desired to find Py;x, , apply Rule 1 of
(Quality with X1 as the external event. Thus we get :

Roxi = Pxoxi = Pxixo = Rexy + Rpxg - Repxy

Alexandria Engineering Journal, Vol. 33, No. 1, January 1994
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= PcPy; + Ppxi - PcPexi
Substituting for Pgy, from Eq.28 we get :

Pxix2 = PcPxy + Pg - PcPp = Py
Substituting for Py, from Eq.27 we get :

thus:
Py = Po P, (1-Pp) + Py 29)

Substituting from Eq.24-26 into Eq.29 we obtain :
Py = [1-(1-P)™2(1-PYf+1-(1-P)Y  (30)
And referring to Figure (9) we get :
P, = {[1-(1-P)™(1-Pp¢ +1-(1-Py)f] "2(31)

The above is the Probability Transfer Function of
the circuit in Figure (9). It may be proved that it
reduces to the transfer function of the pure tree
structure developed in [4] (Eq.4), if redundant inputs
were removed (£ =0) or if their probabilities were set
to 0 (P, =0). By putting ¢ =0 in Eq.31, we have
(1-Py)=1. Thus :

Py, = {[1-(1-P)™P+1-1 }72= [1-(1-P)™"
which is the same as Eq.4. Also putting Py=0 in
Eq.31 we get (1-P, )Y = 1, thus the equation reduces
again to Eq.4.

Once the probability transfer function is established,
let us determine the fixed point bias probability
involving the independent inputs (input probability P,).
It is assumed that each independent input is an output
of a previous stage. By definition, its probability must
be equal to that of the output at a fixed point [4]. The
probability P, of the common inputs may be regarded
as a parameter describing the degree of redundancy. At
a fixed point we have P,, = P, . Substituting for P,
from Eq.31 we get :

P, ={[1-(1-P)™(1-Py)* +1-(1-PY)F}"* (32)
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Gutput Probabllity

-
4/"/3 2/

Input Bias Probability

(a)

Output Probability 6// /
a2 level 1
p_=0.1
n=4 L
m=1]
P
u

Input Bias Probability
(b)

Pb = 0.4

n=4 2
m =3

Input Blas Probability
(c)

Figure 11. Effect of P, and on the fixed point.

The fixed point bias probability is the solution of
Eq.32 for P,. If the equation has no solution then the
fixed point does not exist. If it has a solution then the
fixed point exists and its bias probability is P,,. Figure

(11-a), ...,

(11-c) demonstrate that the existence of the

fixed point largely depends on the values of ¢ and P,
The next step is to find path sensitization probability
for the path extending from an input of the first level
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to an output from the last level. Consider the cit
Figure (9). Let one of the m independent inputsfe
1 be the fauity one. Also, let event A’ be defin
follows :

A’, at least one of the m-1 not faulty indepe
inputs to gate 1 is high. The probability of A" |
by :

P'y=1-(1-Py)™!

Let events B and C be as defined before in Eg.
From FEigure (9), it may be concluded that a fa
the input of the OR gate propagates to the oufp
affects P, if and only if events A’ and B d

uo ?
occur and event C occurs. i.e. sensitization A’}
Thus,

Pg; = PR P'5Pc = (1- Py )1 - P )P, W

st
is the probability of sensitizing the path to theg
Y in Figure (9). Substituting from Eq.25,263
get:

Pg; = (1-P)™!(1-P)? [1-(1-P)™]

Note that signal Y could still be masked fron
output P, if any of the other n/2-1 inputs f
second AND gate in Figure (9) is low. This mean
these n/2-1 inputs must be high in the case of
sensitization. The probability of this event mj
obtained by substituting n/2-1 instead of n/2 inK

L Pyy=Pg; [1-(1-PY™? (1-Py)! + 1-(1-Py)

Where P, is the probability of sensitizing a patht
output P . The probability of sensitizing a
through k levels, denoted by P,, is:

P, = @)

Eq. 34-36 determine the path sensitization probi
P, is obtained by solving Eq. 32.
The following results summarize the extensi
fault detection techniques to the adopted redunda
structure:
1- The number of test generations necessary o
that the circuit is error free with probability!



en by (Eq. 1):

_ log(1-P)
~log(1-P))
,etest length is optimum (M=M,,) when P, is
the fixed point probability obtained by solving Eq.

where, P, is defined by Eq.34-36.

Ihe system has a fixed point if Eq. 32 has a real
wlution.

4 [Fixed Pcint

1
|Probability I
|
1
[ 1
1
| £ £
e [TR-1] >
Mi ‘,; 1 ':“
v ,?:‘gl V- g9
o 1 L1
ﬁo’ 0 = x
M i
T @ @y
3 |

)
(1-P,)

40.4 Degree of Redundancy i

‘:lu' 12. Fixed point probability versus degree of

miler the term (1-Py)¢ is, the more redundant is the
imit. Figure (12) shows the fixed point probability
I solution of Eq. 32) versus the degree of
dindancy (1- b)‘ . It is to be noted that for highly
wlindant circuits (low (l—Pb)' the fixed point does not
iist. For circuit of moderate redundancy there are two
el points. Finally for weakly redundant circuits
iciding the nonredundant case where (l-Pb)e =1)
fere is one fixed point only.

# Redundant circuits are generally more difficult to
test for correctness. The following paragraphs
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explain this conclusion.

Consider the highly redundant circuits, where no
fixed points exist. In such case there is no input
probability P, to satisfy P,, = P, , where P, is given
by Eq.31. This means that either P,, > P, for all
values of P, or P, < P, for all values of P, . Noting
that the output P, of level i is the input P, of level
i+ 1, one concludes that if there is no fixed point, then
either P, (i+1) > P, (i) for all i, or P, (i+1) < P, (i)
for all i. Taking the limit as i tends to infinity we get
either P, (e0)=1, or P, (0)=0. In both cases the path
sensitization probability P, (see Eq. 34-36) is zero.
This means that the path from the faulty gate to the
circuit output is never sensitized. Thus, the random
testing technique fails. Note that putting P, =0 in Eq.1
gives M= oo . This leads to the conclusion, that highly
redundant circuits may not be amenable to random
testing.

0.25 — T
P . §
b 2 \
i 1
i 1
: I
|
! oy -
= 3§ »g
St Eﬁ: ~
’Eg’ g3 e
o { 82' = &
& o :
i
0 (1-p, )1
0.4 Degree of Redundancy 1 b

Figure 13. Path sensitization probability versus degree
of redundancy.

Now consider moderately redundant circuits. Figure
(13) demonstrates the path sensitization probability of
one level (Eq. 34, 35) versus the degree of redundancy
(1-P)’. Note that the sensitization probability increases
as the degree of redundancy decreases i.e. as (1-Py)*
approaches 1. Thus it is easier to sensitize a path in a
non redundant circuit and therefore less tests are
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required (see Eq. 1). Therefore redundant circuits are
more difficult to test for correct operation than their
non redundant counterparts.

The following rule applies to all redundant circuits :
To achieve the minimum (limited) test length, try to
select the inputs in such a way as to reduce circuit
redundancy. To reduce redundancy set all (most) lines
common to several OR gates to 0, which means that
their bias probabilities are 0 (slightly higher than zero),
and set all (most) lines common to several AND gates
to 1, which means that their bias probabilities are 1
(slightly lower than 1).

3.2 Mesh Topology

This subsection extends circuit structure to thel
topology. Consider the circuit in Figure (14).]
are ¢ external inputs common to each pair of OR{
and j external inputs common to each pair of}
gates. All external inputs are mutually indepe
Each OR gate also has its own m independent i
Each AND gate has a total fan in of n. P, , i
and P refer to the probabilities of independe
inputs, external OR inputs, external AND inpuf
output (see Figure (14)).

P
a Ll
P m J r\ puo ,__\ :.'“\
. uam W © S e
e Y e =1V e
s I —
p X2 n-3 P l

Input Bias Probability

Figure 14. Mesh circuit topology.

The first step towards the analysis of such circuit is
to establish its probability transfer function, i.e. an
expression for P, in terms of P, , P, and P,. From
Figure (14) it may be proved that :

Px; = Pxp = 1 - (1-P)* (1-P)™ , thus :
P, = P I [1 - (1-Py)* (1-P )™ ™ 37

where X1 and X2 are shown in Figure (14).
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Output Bias Probability
Common Input Probability

0

No. of Independent (R irputs
No. of Common OR inputs
No. of Indepenent AND 1nputs
AND gate fan-in.

=2 S - |

Eq. 37 gives the probability transfer function
single module, which is the relation between thei
bias probability (denoted by P,) of a module and
output bias probability (denoted by P, ). Note!
eliminating redundancy by making ¢ =j=0{
deleting all lines labeled ¢ or j from Figure (14)),
37 reduces to:

Pyo= [1- (1-P)



fich is the same as Eq.4. Thus the redundant mesh
fucture may reduce to the nonredundant tree structure
ferbed in [3] and [4].

The last equation may also be proved using the
melation propagation laws (section 2.2). Figure
(I>4) shows a simplified part of Figure (14), from
fich P,y may be calculated. Events A and B, are as
ffined in section 3.1, and event D is defined as

more inputs like X1, apart from the input D and
lie input X1 considered above. Thus its output
pobability P, may be expressed by :

B,=Py,"I"! Py,p, .Substituting from above this gives:
Bo= p + P - Pag )" [Pap + Py(Pp - Pap)l ,

ud since B is independent, the above expression
educes to

Pyy=[P+Pg(1-P I[P, p +Pp(Pp-Pap)l, (40)

Eliminating redundancy by making £=j=0, Eq. 40
¥ mst reduce to Eq. 38. To demonstrate it, note that
iting ¢ =0 makes P =0 (Eq. 25), and setting j=0
mikes P, =1 (Eq. 39). Thus Eq. 40 reduces to :

P, =P, ™1p,,

utsince P, =1, event D is a sure event (given j=0),
fiom which :
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P,p=P{(Event A) and (The Sure Event)} =P,. Thus
we get:

P, =P, "1P, = P, ™ (note that j=0.)

finally substituting for P from Eq. 24, the expression
for P, becomes :

wo— [1 - (1_Pu)m]n

which is the same as Eq. 38.

1t should be noted that while the probability of each
output is P, , the joint probability of two outputs is
not P, 2 since they are correlated. The correlation
propagation law may be employed to obtain this joint
probability. To demonstrate how this may be done
consider Figure (15-b) which shows a part of the mesh
in Figure (14), which is redrawn to facilitate later
analysis. Events A, B and C, relating to gates 1 and 2
are as defined in section 3.1. For generality, it is
assumed that A and C are correlated. The solution is
carried out on four steps.

First, since Py, = P, + Py - P,p, from duality,
with B being the external event, we get Ryg = Rpg
+ Rpp - Ryupp , thus Ppy;=P,p+PpPrp= Pp.
Similarly, with C the external event we get Poyy =
Pyc + PgPc - PgPac , and with CX1 the external
event we may prove that Pgoy=Pp Pe.

Second, Since Py, = Pg + P - Py, from duality,
with X1 being the external event, we obtain Py,y =
Ppx1+Pcxi1-Ppexi. Substituting for the terms in the
right hand side from the expressions obtained in the
previous step we may prove that Py iy, =Pg+(1-Pp)
Puc. '

Third, since Py; =P, Py, we have
Pyixo = Py Pxixo _

Fourth and last, since Py, = P,J Py, , we have :

I 2
Py1v2=Py Pyxo=P, 7 Pxixo

=P, 3 [Pg+ (1- Pg) Pl 41)

This is the expression for joint output probability.
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Figure 15. Analysis of mesh circuits.

The next step is to find path sensitization probability
from an input to the first level to an output of the last.
Using Boolean logic, and the definition of the
probability of an event, it can be proved that path
sensitization probability from a module input to X1 and
Y1 (see Figure (14)), denoted by Py, , Pg, respectively
are given by the following equations :

Ps; = (1-P)f (1-py)™! (42)

Ps, = P, PJ[1 - (1-P)* (1-P)™™F  (43)
and finally the path sensitization probability P, of k
levels is :

P, = (P

The input bias probability P, must be the fixed point
probability given by solving Eq.41 with P,, = P, for
P, . It is given by :

(44)

P, = P, [1 - 1-Pp* (1-p )™ | (45)
The main conclusions about fault detection in the
proposed mesh structure may be outlined as follows :
1-  The number of test generations necessary to assert
that the circuit is error free with probability P is
given by :

M = log (1-P) / log (1-P)) (see Eq. 1)
where P, is defined in Eq. 42-44.
2- The condition which leads to the optimum test

length M, is that P, has to be the fixed point
bias probaf)ility obtained by solving Eq. 41 for P,,.
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As it has been in the previous subsection, fh
(1-P,)! in Eq. 41-44 is viewed as the eff
redundancy, the term P, J is the effect ofh
external inputs at each level of the mesh
existence of external inputs at each
characterizes the mesh structure, since an
cascaded levels in the mesh may be combit
one level only, unless there are external inf
the second stage which are not inputs to thel
Since external inputs are always present &|
level of a mesh, understanding their effect on
detection is a basic issue in circuit analysis.
The effect of external inputs on test length?
system has a fixed point if Eq. 45 hasa
solution for P, . Figure (16) shows the fixed
probability for five different values of P,
curve is a plot of the solutions of Eq. 451
fixed value of P, versus (1-P)I’.

Fixed Point
Probability

(1h




- Note that putting P, = 1 eliminates the effect of
#ternal inputs on P, (the term P, J disappears from
Eq. 45). With no external inputs (j=0), the curve has
fiesame shape as in Figure (12) for tree structure. The
maracteristics of the mesh structure reduce to that of
Afree.

AsP, decreases slightly (e.g. curve 2 and 3 in Figure
(I6)), another root appears to Eq. 45 (see the upper
Jut of Figure (16), for curves 2, 3, for a given value
of (1-P)). This means that the introduction of
tternal inputs creates a new fixed point.

As P, decreases a bit more (curve 5 in Figure (16)),
lieold fixed point gradually disappears. Note that any
kertical line may intersect curve 5 in no more than one
Joint. Recall that curves 2 and 3 may be intersected in
mre than one point. Thus the effect of external inputs
Bintroducing a new fixed point and eliminating the old
e,

Figure (17) plots the path sensitization probability
Z(Eq. 44) versus (1-Pb)' . Curve 1 is plotted for
£=098, curve 2 is plotted for P,=0.95. They
wmespond to curves 2 and 3 respectively in Figure
(I). From Figure (16) note that for moderate
wdundancy each curve has two fixed points, one of

hith sensitization probability at that fixed point is much

kss than that at the original one (e.g. B1, C1). Less
pithsensitization probability means longer testing time.

[Path Sensitization
Probability (Ps)

Point 1

S i
, 1 (1-8)

Note also that the maximum path sensitization
bability is achieved at point 1 of curve 1 (see
fire  (17)), where curve 1 corresponds to
0=0.98 (nearly 1), which means that the effect of
iternal inputs is minimum, and point 1 corresponds to
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(1-Py)¢ =1, which is the nonredundant case.

Thus, to minimize test length (i.e. the number of
generated input patterns) it is desired to select the input
bias probabilities such that redundancy is minimum,
which is consistent with the conclusion made in
subsection 3.1, also external inputs must have
minimum effect, which is achieved by setting P,=1.
The input bias probability of inputs to the first level is
the fixed point probability. If there are two fixed points
neglect the one created by the presence of external
inputs, it corresponds to smaller path sensitization
probability.

3.3. Circuits with Feedback

Feedback is isolated from other factors which may
affect the analysis, namely, the degree of circuit
redundancy and the number of external inputs. To
achieve this isolation simple non redundant tree
structure has been chosen, and a feedback loop has
been added, as shown in Figure (18-a). In this
structure each AND gate has n inputs except for the
AND gate involving the feedback signal which has
n+1 inputs. Also each OR gate has m inputs, m-1 of
which do not involve feedback. Input bias probability
of a stage is denoted by P, and output bias probability
is denoted by P,,. The feedback loop has an Enable
signal e, which has a bias probability P,. The effect of
the feedback loop may be increased or decreased by
changing the bias probability of the Enable signal e. As
P, increases the effect of the feedback loop decreases
and vice versa.

To analyse the circuit of Figure (18-a) Let us define
event Z as :

Z = {All n non-feedback inputs of the AND gate are
high}.

Thus P,=P," (46)

Now, redraw the feedback loop in a manner
consistent with the model presented in Subsection 2.3
(see Figure (18-b)).

The Gate block in Figure (18-b) has the truth table
shown in Figure (19-a). The combinational logic block
has the truth table shown in Fig. 19-b. The probability
Py is given by Eq.23 (see subsection 2.3 for complete
derivation):
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(a)

Figure 18. Analyzed circuit with feedback.

- of | of
| of of of =

Figure 19. Truth tables of the analyzed circuit.

L(u)+[H(u)-L(u)][d0+P,(d2-d0)]
1-[H(u)-LW)][(1-P2)(d1-d0)+P(d3-d2)]

Y=

Comparing the truth table in Figure (19-a) with that
in Figure (6) (see subsection 2.3) we get :
d0=d1=d2=0,d3=1. (47)

And from the truth table in Figure (19-b), we have:
H() = (48)

L@) = 1 - (1-P, H™(1-P,) (49)

where H(u) and L(u) are defined in Eq. 17 (subsection
2.3). Substituting in Eq. 23 from Eq. 47-49, we get :

1-(1-P)™ l(1-p)

Py = — (50)

- n

1-(1-py™'(1-pP, )P,

1-(1-PpMHm-1(1-p
_ el =P 51)
1-(1-P )™ Y(1-Py P}
We also have (see Figure (18)):

Py, = 1 - (1-Py) (1-P,m™! (52)
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-
g

Combining Eq. 51, 52 we get the probability
function:

(1-P )™ 1(1-P,) pn
1-(1-P™™ L (1-p )P

—
n

As a verification note that putting P, = 1 in Eg.
terms (1-P, ) become zero. The equation reduce
P,=1-(-P,™ (1P, ™! =1-(-P
which is the same as Eq. 4 for non redundal
structure derived in [4]. Thus the effect of feu
disappears when P,=1.
The circuit in Figure (18) has a fixed point wh
output probability P, is equal to the input probi
P,. To find the fixed point probability set P, =I
Eq. 53 and solve for P,. Figure (20) shows the
and fixed point bias probabilities of the first five
of the circuit for largely different values of P,.|
Figure (20) it is evident that the 1ntr0duct10n
feedback loop changes slightly the fixed point
probability. Note that increasing P, from 0.2 to’
by 500% changes the fixed point probability by
than 5%. Such change may be practically neglec
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figure (21) Shows the effect of changing fan-in on
ired point probability. In Figure (21-a) the output bias
ohability of the 5™ level and the fixed point
mbability are shown for different AND gate fan-in’s.
hese values are compared with the corresponding
s for pure tree structure (Figure (21-b), note
1=1). No appreciable difference is observed.
The following may be concluded :
- The presence of feedback does not alter appreciably
the fixed point probability of the module in which
the feedback loop is present. Thus to simplify the
amalysis, feedback loops may be neglected. Indeed
the feedback does not add any new elements or
inputs to the circuit, and therefore does not
' tontribute very much to simplifying or complicating
the process of fault detection.
 From Figure (18-a) note that if X is stuck (at ’1’ or
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Figure 20. Output probability versus input bias probability.

-

Irgut Bias Probability B,

(b)

Figure 21. Effect of changing fan-in on fixed point probability.

’(’), the probability that the fault is propagated to
the output Z is the same as that for pure tree
structure. This is because the remaining part of the
circuit (i.e. that which functions correctly) is the
same as that of a pure tree. Thus the path
sensitization probability of the path extending from
X to the output Z of the module containing the
faulty element is the same for both cases.

The fan-in has a more pronounced effect on fixed
point probability (Figure (21)). Increasing the fan-in
moves the fixed point in the direction which
decreases the path sensitization probability and thus
increases test length. It is understood that the fan-in
cannot be varied during circuit testing since it is
determined by the given circuit design and is not a
test signal parameter. Therefore if fan-in is high,
the penalty on test length has to be accepted as a
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fact which cannot be avoided. Thus, increasing
fan-in prolongs the testing process (fault detection).

Note that as fan-in increases (Figure (21)) the fixed
point probability becomes nearly unity. In a simple tree
structure, for example, the sensitization probability of
one level is given by (see [4]) :

PSl —_ Pu n-1 {1- Pu n)m-l

As P, tends to 1, the above expression tends to O,
which means that the test length M (see Eq. 1)
increases. Since feedback does not alter the fixed point
too much, the same result applies for circuits with
feedback. It can be shown that this result also applies
for redundant and mesh structures. Eq.34-36 and
Eq.42-44 give path sensitization probabilities for
redundant circuits and mesh circuits respectively.
Substituting with P, =1 in these equations results in a
path sensitization probability P,=0.

4. RANDOM VERSUS EXHAUSTIVE TESTING :

In this section a mathematical expression will be
derived to indicate whether it is better to use random
testing or it is better to use exhaustive testing. For
circuit with few inputs, say 2 or 3 inyuts, the
exhaustive testing is quite simple (22 or 2 patterns
respectively). Thus there is no need to resort to
random testing. As the number of inputs increases,
exhaustive test length grows exponentially. At some
point it becomes more practical to use a random test.
The purpose of the coming discussion is to find an
expression for the critical number of inputs beyond
which the random test is recommended, and relate this
expression to circuit parameters. After an exhaustive
test is performed, one knows with absolute certainty
whether the circuit is fault free or not. On the other
hand, after a random test is performed one is never
absolutely sure. All the random test can guarantee is a
probability P that the circuit is error free. Although
this probability P can be made arbitrary close to 1, it
can never be exactly equal to 1, since in that case the
required test duration M must be infinite as predicted
by Eq.1 (rewritten below).

M = log (1-P) / log (1-P,)
and for P=1, M = log (0) / log (1-P,)

If no faults are discovered during a random test, the

B34

Alexandria Engineering Journal, Vol. 33, No. 1, January 1994

circuit could still be faulty since the pattemn
sensitizes the path to the faulty gate has mfl
applied. Thus one should not select the random
unless the time savings are sufficiently large. I
words the random test is recommended only if:

M,y < kM e k<< 1,

rand
where :

k is the ratio between the number of ri
test generations and the total num
generations needed for an exhaustive

M, hause 1S the exhaustive test length.

Mp,q is the random test length.

It is now desired to relate Eq. 54 to the numl
circuit inputs.

Let q = 2° denote the number of all possiblei

patterns, where r is the number of inputs.

Let t be the number of input patterns which s

the path to the faulty gate.

Thus path sensitization probability P is P, =t

the number of random patterns applied be:

Mg = b.q, where b is some arbitrary fraci

Since each applied pattern either sensitizes or (o
sensitize the path, it may be viewed as a binary#
Thus the probability that a number x of the g
patterns sensitize the path has a binomial distribuf

P {Sensit.= x} =(b-q L9 P, X (1-P)*

If path sensitization probability P, , and the!
number of applied random patterns b.q are suchi

P, << 1, and b.n > > 1, which is typicill
case, then Poisson theorem states that the Bim
distribution (Eq. 55) tends to a Poisson distri
with parameter P,.b.q. Thus :

P {Sensit. = x} =e *

The probability P that at least one pattern sensitiz
path is :

P = 1 - P {Sensit.= 0}

Substituting for x by 0 in Eq. 56, and insertingit
57 we get:

P=1-¢ *"d



fits desired that the circuit be error free with a
Jubability P=99.9%, i.e P=0.999, then from Eq. 58:

19=1-¢ "*"**% from which 0.001= ¢ s>
lking the natural logarithm of both sides we get :

- P,.b.q = 7, where by definition ¢ = 2.

M
Thusb = ' 7
Mexhaust 2!..Ps

9

illy, combining Eq. 54 and 59 we get the condition
igplying the random test method. The random test
By be applied only if :

7/@P) < k 60)
Were

b is the path sensitization probability as obtained
from the equations of the corresponding circuit
structure (e.g. Eq. 34-36 for redundant structure,
Eq. 42-44 for mesh structure).

is the required time saving of the random test,
defined by inequality (54). For example if it is
tequired that the random test take no more than
0.1 the time an exhaustive test takes, then k =
0.1.

(Rdundancy in logic circuits is one of the factors
miributing to increasing circuit test duration. This

ilts within the circuit such that they do not affect its
iuts. Thus, discovering such hidden faults becomes
e difficult, and requires a longer test. In Figure
- ) the maximum path sensitization probability is
tied in a nonredundant circuit. As the degree of
indancy increases the path sensitization probability
Wreases which means that faults become more

Alexandria Engineering Journal, Vol. 33, No. 1, January 1994

FAHMY and ABDEL-ZAHER: Probabilistic Analysis of Fault Detection in Complex Logic Circuits

difficult to discover. The expression for path
sensitization probability P, is given by Eq. 34-36. The
corresponding number of test generations is given by
Eq. 1.

To minimize the number of test generations, the
following conditions must be observed :

- For inputs common to several OR gates, set the
input bias probability to 0.

- For inputs common to several AND gates, set the
input bias probability to 1.

The above conditions reduce the degree of
redundancy. In addition the following must be
observed :

- The optimum bias probability of the input signals to
be applied during testing is calculated by solving
Eq. 32. It should be noted that for highly redundant
circuits, Eq. 32 has no solution (see Figure (12)),
and the random testing approach fails. Highly
redundant circuits therefore may not be amenable to
random testing.

5.2 About Mesh Structures

Mesh structures usually have external inputs at each
level. In section 3.2 it has been proved that the
existence of these external signals shifts the circuit
fixed point in a direction which reduces path
sensitization probability (see Figures {16), (17)). This
means that the number of required test generation
increases. Path sensitization probability Py for mesh
structures is given by Eq. 42-44. The corresponding
number of test generations is given by Eq. 1. The test
length M is minimum when the input bias probability
P, is the solution of Eq. 45. This equation may have
more than one solution for P, . In such case one
should select P, which corresponds to the larger path
sensitization probability. Figures (16), (17) may be
useful in that selection.

In redundant mesh structure the effect of external
inputs must be minimized by setting their probabilities
to 1 (0) if they enter AND {OR) gates. This maximizes
path sensitization probability.

5.3 About Feedback

The presence of feedback does not alter appreciably
the fixed point probability of the module in which the
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feedback is present. Accordingly, the path sensitization
probability is almost insensitive to feedback, which has
an important implication. It means that feedback loops
may be neglected in circuit analysis as far as only fault
detection is concerned. Feedback does not add any new
elements or inputs to the circuit, and thus does not
contribute much to simplifying or complicating the
process of fault detection (Figures (20), (21)).

5.4 About Fan-in

Although the effect of fan-in has not been studied
separately in a section of its own, the fan-in has been
included as an explicit parameter in all derived
equations for path sensitization probabilities and fixed
point probabilities for the different circuit topologies.

It has been observed that fan-in has a large effect on
fixed point probability. Increasing the fan-in moves the
fixed point in the direction which decreases path
sensitization probability and thus increases test length.
This effect is clearly demonstrated in Fig. 21 where the
increase in AND gate fan-in moves the fixed point very
close to 1, which significantly decreases path
sensitization probability P, (see Eq. 34-36, 42-44).
Notice that when P, =1, we get P, =0. Another
manifestation of the same effect may be observed in
Figures (13) and (17), which plot path sensitization
probability for the circuits in Figures (9) and (14)
respectively versus the degree of redundancy (I-Pb)
Notice that increasing ¢ (which means increasing OR
gate fan-in) decreases the value of (1-P)* and thus
decreases path sensitization probability as evident from
Figures (13) and (17). This result has an obvious
explanation. As the number of inputs increases, it
becomes more and more difficult to find the input
pattern which sensitizes some given path. Therefore,
path sensitization probability decreases.

Unfortunately, nothing can be done to improve test
length if the circuit has a large fan-in. Fan-in cannot be
reduced during testing, since the only way to reduce it
is by cutting some connections between gates. This is
something like destroying the circuit in order to test it
for correctness.

5.5 The Applicability Conclusion
Random testing should not be applied, unless the
applicability condition (inequality (60)) is satisfied for

the circuit at hand. If it is not satisfied, then the
exhaustive testing is better.
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