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ABSTRACT

Two-dimensional free-surface flow over a semi-infinite polygon in the bottom of an open channel is
considered. The fluid is assumed to be incompressible, inviscid, and the motion is irrotational with gravity
acting. A numerical method for the solution of the fully nonlinear problem is presented. For the special
case of trapezoidal obstacle, critical solutions in which the flow is subcritical upstream and supercritical
downstream, are obtained. The dependence of nonlinear free-surface profile on trapezoidal shape and size

is discussed.
1. INTRODUCTION

This paper considers the problem of steady free-
surface of a running two-dimensional, irrotational,
inviscid and incompressible flow in an open channel
with a nonuniform bottom in a shape of a polygon.

Far upstream the flow approaches a uniform stream
with constant velocity U; and constant depth H;. We
define the upstream Froude number,

U
Fj=—1, 1.1)

JeH,

where g denotes the acceleration due to gravity .

Solutions with wave downstream are not considered
in this paper. Therefore, we assume that the flow
approaches a uniform stream with constant velocity U,
and constant depth H, far downstream and we define
the downstream Froude number F,,

U
Fo=—2 . (1.2)

R

The flow is said to be subcritical when the Froude
number is smaller than one and supercritical when it is
greater than one.

Free-surface flows over various obstacles have been
studied for at least the last century. One will find an
attractive discussion of the subject in the four papers of
Lord Kelvin [1]. In 1932, Lamb [2] presented a
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general linearized theory for flow over stream beds of
arbitrary shape.

The literature of the topic is rich and in particular we
may mention the work of Tuck [3], Gazdar [4], Long
[5], Newmann [6] and Watters and Street [7].
Recently, a considerable amount of work has been
done by Faltas, Hanna and Abd-el-Malek [8], Hanna
[91,[10], Abd-el-Malek, Hanna and Kamel [11], King
and Bloor [12], Forbes and Schwartz [13] and Vanden-
Broeck [14].

In this paper we calculate the flow past a submerged
polygonal obstacle by a series truncation procedure.
This technique has been used by Birkhoff and
Zarantonello [15], Dias, Keller and Vanden-Broeck
[16] and Dias and Vanden-Broeck [17].

The type of solutions for which the flow is subcritical
upstream and supercritical downstream is referred to as
"critical flow". Critical flow is obtained by allowing
the upstream Froude number F, to be sought as part of
the solution. Such flow has been recently obtained by
Naghdi and Vongsarnpigoon [19] by considering a
fluid sheet over a stationary bell-shaped hump, by
Forbes [18] for a submerged semicircular obstacle and
by Dias and Vanden-Broeck [17] for triangular
obstacles.

In this paper we solve nonlinear critical flow of ideal
fluid over a polygonal obstacle numerically by
specifying uniform flow upstream and downstream of
the obstacle. In section (2) we formulate the problem.
Solutions for polygonal obstacle are presented in
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section (3). For the special case of trapezoidal UEg =Y v, = ¥y Q2
obstacles solutions and results are presented and
discussed in section (4). The constant pressure condition at the fluid surface

leads to Bernolli’s equation in the form
2. FORMULATION OF THE PROBLEM

Consider a steady, two-dimensional, incompressible, % (u2+v?) + gy =constant (3
and irrotational flow of an ideal fluid over a polygonal ’
obstacle of N’ sides, placed at the bottom of an open on the fiee suiface.
channel Figure (1). A cartesian coordinate system is Evaluating (2.3) as x - + o we obtain
defined with origin placed horizontally at a point “ -
between 1 and N'+1, the x-axis coinciding with the 1.2 1.2
stream bed before and after the obstacle and the y-axis = U/ +gH, = . U, +gH, 24
pointing vertically upwards. Fluid flows through the
channel in the positive x-direction, with speed U; and
depth H, infinitely far upstream. Relative to the
coordinate axis the flow is steady and is subject to the
acceleration of gravity g in the negative y-direction. (n-1 )[__I_Fz2 (p+1) —.L] =0, 2.5
Suppose that the flow is critical, with unknown speed 2 K
U, and depth H, far downstream, then by conservation
of mass

This equation gives the relation,

where

H U
Q=U;H,=U,H,, 2.1 po=2= 1t 2.6)
H U

where Q is the discharge.

Relation (2.5) shows that the two types of solutions
correspond to

@7

and
p=1 29

Thus for the case of critical flow Uy > U, i.e. p<1,it
necessarily follows from (2.7) that the downstream
Froude number F, > 1.

Equation (2.2) shows that the complex potential

Figure 1. Sketch of the physical plane of the flow and
of the coordinates and the polygonal obstacle. Xx=¢+iy , 2.9)

Since the flow is irrotational and the fluid is
incompressible, a velocity potential & and a stream
function ¥ exist, in terms of which the horizontal and
vertical components, u and v of the fluid velocity
vector may be expressed as

can be expressed as an analytic function of the variable
Z=X+1iy. (2.10)

The bottom of the channel and the obstacle are parts of
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a streamline on which we require y=0. We introduce
the dimensionless variables by taking [Q%/g]"/? as the
unit length and [Qg]"? as the unit velocity. The
dimensionless discharge is now equal one. Hence, the
free surface is another streamline on which y=1 .In
terms of the dimensionless variables, the condition
(2.3) becomes

(V$)? +2y = constant on ¢ = 1 (2.11)

The complex potential x maps the flow domain
conformably onto an infinite strip of height one as
shown in Figure (2). We map this infinite strip onto
the upper half of the unit disk with I; and I,
corresponding to the points -1 and 1, respectively
(Figure (3)), so that the solid boundary goes onto the
real diameter and the free surface onto the upper half-
unit circle. The images of the points 0,1,2,...,N"+1
are to,ty,t,...,tnr 4 Tespectively. The map is given by

2 1+t

X =— In ;t] sl (2.12)
T 1-t
v
X -PLANE
|1 1 |P '2
Y o123 Jy N l,
© ¢

~ Figure 2. The complex potential plane.

The problem is now to find an analytic function z(t)
satisfying the boundary condition (2.11) and mapping
the streamline y=0 into the channel bottom and the
obstacle. By introducing the complex conjugate
velocity

e(z)="X_iz) =u-iv , @.13)

d

the problem becomes that of finding ¢ as an analytic
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function of t satisfying,

| £ |>+2y=constant on |t]| =1 (2.14)

and the boundary condition on the real diameter -1 <
ts 1.

t- PLANE

Figure 3. The complex t-plane.
3. SOLUTION

The first step is to introduce in the complex velocity
the strong singularities which occur at the angled
corners of the polygon at the points,

t=t;  §=0,1,2,..ty/, @3.1)

i
where N’ is the number of sides of the polygon. The
appropriate singularities are

§oad

E~(t-t) * astot; j=0,1,2,.,N +1(32)

where the angles o satisfy the relation

N’+1 3
Y o =(N+Dh~7

0

(3.3)

As ¢ - oo, the flow approaches a uniform supercritical
stream. We introduce the angles a; = o /x and we
proceed to drop the primes. Therefore asymptotic
form of { as ¢ — oo is obtained by linearizing the
equations around a uniform stream [2]. This leads to,

E~t)+A e ™™ as¢p—>00 (3.4
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where A’ is a constant and A is the smallest positive
root of the equation,

F,2A-tan A =0 3.5)
We rewrite the equation (3.4) in terms of t in the form,
E~E1D)+A(1-t)2V7 a5t> 0 (3.6)

We now define the function I (t) by the relation

i=N'+1 4 g 1-g 2
tE= H [ ] eA(1-t) " +T(®) (3.7)
E

The function I (t) is analytic for |t| < 1 and
continuous for |[t| < 1 [15]. The kinematic boundary
conditions on the channel bottom and on the obstacle
imply that the expansion of I (t) in powers of t has real
coefficients. Therefore, we can write

re=Y a t* 3.8)
k=0

The unknown real coefficients a, and A must be
determined to make (3.7) satisfy the dynamic free-
surface condition (2.14). )

We use the relation t= [t| €', so that points on the
free surface are given by t=e' , 0 < ¢ < 11 Using
(2.12) and the identity

ox .9y _ 1
3% 1% I 3.9

We obtain after some algebra,

v 1
u2+vy2 sing

gy ..2
™

g

(3.10)

By differentiating (2.14) with respect to ¢ and using
(3.10) we obtain,

[1(0)u,(0) +¥(a)v,(a)] - = — Y :

% [u(o))® + [v(o)]* sino

-0 (3.11)
We now set t=el in (3.7) to get £(s), and substitute
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the expression in (3.10). The resulting equation shall
be used to determine the coefficient a, . The next st
is to express x and y as functions of & . Inverting

2.13) yields & = L and thus,
dx ¢

dz

dz _ 1 dx 6.1)
dt ¢ dt

Now by integrating (2.12) along the unit circle, we

obtain

1

— 48, 0< < I
£(s) sin s

z(0) ~Z,= -%

Nlﬁi'-—- Q

We solve for the a,’s numerically by truncation the
infinite series in (3.8) after N term, where,
NI
N=n—(_7.+b) (3.4

where b=4 for N’even and b=3.5 for N’ odd.

We fix the geometry of the polygon by specifying
aj,j=0 to N’+1 and to,b,..,tn 1IN0 41 for N even
and tg,ty,.....tnota g for N odd. We find the n
unknowns ty,ts,ts,...,A,F,,a0,a;,...,ay by collocation.
Thus we introduce the n-3 mesh points,

w |
=——_(M--) ,M=1,2,...,n-3 (31
GM (n_3)( 2) > gy n ( 5)

which are substituted in (3.11) in order to satisty i,
This leads to n-3 nonlinear algebraic equations.
Relation (3.5) provides another equation. By relating
F, to the velocity downstream and rewriting (2.7) in
terms of £,we get the required two equations

Fo= 1) |3 (3.16
and

F 2_ 2| E(I)IZ 3.17
2T [ TEEnTT O

This system of n nonlinear equations with n unknowns
could be solved by Newton’s method.




4APPLICATION, SUMMARY AND DISCUSSION.

Let us consider here the steady flow over semi-
infinite trapezoidal obstacle consisting of a raising up
inclined plane (01) at inclination angle «, horizontal
plane (12) with length L and at height W from the base
of the bottom, stepping down plane (23) at inclination
angle (w-B) as shown in Figure (4).

| 2
vlv‘] (s "4 B( 4 X

Figure 4. Shape of bottom profile in the special case
of trapezoidal obstacle.

We introduce the cartesian coordinates with x-axis
dlong the bottom and the y-axis going through the
corner 2 of the trapezoidal obstacle. In this case N’=3
and equation (3.7) takes the form,

21
t1 —1}-ey t t3 }BeA(l-t) = +T(e) (4 1)

-t -

0~ "o ay
1-¢, 1
We set t=e? in (4.1) and substitute £ in (3.11). We
shall use the resulting equation to determine the N
coefficients a,, where N is given by,
N=n-5 (4.2)
To do so we introduce the (n-3) mesh points according
to equation (3.15) and satisfy (3.11) at these points.
This leads to (n-3) nonlinear algebraic equations. The
relation (3.5), (3.16), and (3.17) provide the other
three equations we need. We fix the geometry of the
trapezoidal obstacle by specifying the angles « and 8,
to,t3. The n unknowns are then t;,\,F,,Aay,a,,.,.,3, s.
This system of n nonlinear equations with n unknowns
is solved by Newton’s method and Gaussian
elimination method with scaled column pivoting
algorithm.
Once we solve this system we calculate the height W
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of the obstacle by using numerical integration along the
real axis of the relation (3.12).

&

. dx, 1
W—smal E-t-} —f—dt 4.3)

We check the results by integrating the same relation
between t,=0 and t; to give the same W

W= sme{dx} ; @.4)

In order to calculate the profile we first calculate the
coordinates of the point P on the free surface and with
¢p=0. To do so we integrate (3.12) along the
imaginary axis in t-plane between t,=0 to t=i,

i
=

1
= dt 4.5
: 4.5)

‘“t
- |22

where,z,= iW .

Next we calculate the coordinate of the points of the
free surface profile by using(3.13) in which we
integrate along the unit circle in the t-plane between the
point P{o==/2) and the point (x,y) on the free surface.

To evaluate the upstream Froude Number F; we use
the formula

= &(n)|? 4.7)

The coefficient a, were found to decrease rapidly as
the index k increases. In table (1) we give the value of
ag and the last coefficient ay for values of N=35 to 25
in steps of 10 for small obstacle and for N=5 to 35 in
steps of 10 for large obstacle.

Table 1. Values of a; and ay for small obstacle
L=0.06 and W=0.05.

N 5 15 25

ag | 9.9268x10%| -9.9181x10%| -9.9152x107?

ay | 3.4996x10° | -6.2053x107 | -9.1021x10*
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Table 2. Values of aj,and ay for large obstacle
L=0.250 and W=0.583

N 5 15 25 35
ag | -0.42215 | -0.42203 | -0.42218 | -0.42223
ay [-2.411x103] 7.027x10| 5.327x10° |6.882x1077

The profiles for different values of N for small
obstacle are shown in Figure (5). The error decreases
rapidly with increasing N and for N=35 its maximum
value lies within 2.5x1073. Most of the computations
were performed with N=35. We solved the equations
with relative error smaller than 10 and we performed
the integrations with an accuracy of 107,

1.04

1.02}-

4 o =f =0.3333

L=0.06
090" W=0.05
e . 2 o 2 . s X

Figure 5. Effect of number of terms N of the series
L7 (t) on the free-surface profile.

4.1 The effect of the height W on the shape of free
surface profile and flow parameters

The change of the shape of the free surface profile is
shown in Figure (6) for small W and in Figure (7) for
large values of W, keeping the angles «,8 and the
length L constant and the discharge Q=1. The
upstream depth H; is nearly linear dependent on the
height W. Downstream, the depth H, is also nearly
linear dependent on height of the obstacle.The variation
with W of the upstream Froude number F; and the
downstream Froude number F, are shown in Figure
(8-a) and (b) respectively. For very small W, the
overall flow is nearly uniform, at the critical Froude
numbers, F; - 1 and F, »1 as W - 0. As W is
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increased, F; decreases with W ,fast for small Wan(k
slowly for large W. The downstream Froude number
F, increases with increasing W. Our results here are
qualitatively similar to those of Forbes [18] and Naghdi
and Vongsarnpigoon [19].

Y

1.5

W=0. 418

1.3

W=0.192

1.1

0.9

0.7 L n N X
-4 -2 0 2 4

Figure 6. Effect of the height W of the
obstacle, for small W, on the free-surface
profiles.

. ; . i — x
0'543 -4 2 0 2 4

Figure 7. Effect of the height W of the
obstacle, for large W, on the free-surface

profiles.

F
2
2.4

22 ov=f-03333
W=0.25
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-

0.8

0.6

0.4

0.2}-

0 A 1 | " w
o 0.2 0.4 0.6 0.8

Figure 8. Effect of the height W of the obstacle on
the Froude number,
(a) downstream, (b) upstream.

4.2 The effect of inclination angle o on the shape of
thz free surface profile and flow parameters

The shape of free-surface profiles for different
angles « are shown in Figure (9). The increase of «
influence both H; and H,, weakly for large « and
strongly for small a. As « is increased H; increases
and H, decreases. The variation of F, and F; with the
angle o is shown in Figure (10-a) and (b). F, drop
very fast as « = 0 and very slow as o = 0.5 . F,
increases fast for small o and then slowly as «
approaches 0.5.

1.3

5 1l

0.9
& =0.4166

8=0.3333

0.7 : . : : .
4 -2 0 o2 4 X

Figure 9. Effect of inclination angle « of the obstacle
on the free-surface profiles.
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1.5

1.48)

1.46

1.44

1.42 . . . (o4
0.05 0.15 0.25 0.35

0.7

0.85
B8 =0.3333

L=0.366
W=0.25

o . 1 A L a
0.06 0.18 0.25 0.35

Figure 10. Effect of the inclination angle « on the
Froude numbers, (a) downstream, (b) upstream.

1.6

=

0.6

Figure 11. Effect of the top length L of the obstacle on
the free-surface profiles.
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4.3 Effect of L on the shape of free-surface profile
and flow parameters

The computed free-surface profiles are displayed in
Figure (11) when L varies from 0.0309 to 1.607. The
depth H; increases and H, decreases with the increase
of L. The depths H; and H, are very sensitive for
small changes of L, for small L. On the contrary, for
large L, H; and H, varied slightly for changes in L.
Plots for F, and F; against L are shown in Figure
(12-a) and (b).

FZ
1.7
1.6
1.5
o =3 =03333
1.4
WwW=0.25
i 1 L L
1.3
] 0.5 1 1.5
F
1
0.8
o =B =0,3333
o7 W=0.25
0.6 |-
) B L
0.5 ~ -
o 0.4 0.8 1.2 1.6

Figure 12. Effect of the top length L of the obstacle on
the Froude numbers,
(a) downstream, (b) upstream.

4.4 Effect of the inclination angle 3 on the shape of
free-surface profile and flow parameters

The computed free-surface profiles are displayed in
Figure (13) for different values of the angle f. The
depth H1 increases slightly with increasing §. The
depth H, increases with the increase of 8 It is weakly
dependent on 8 for small # and strongly dependent on
B for large B. The variation of Froude numbers
upstream and downstream with the angle § are shown
in Figures (14-a) and (b).

Y
B=0.4166
1.3
$=0.25
$=0.0833

1.1)-

o =0.3333
0.9]- L=0.366

W=0.25
O 2 oz« X

Figure 13. Effect of the descending inclination angle

B on the free-surface profiles.
A
¢ =0.3333
L=0.366
1.48/-
W=0.25
1.44 4 . - B
0.04 0.14 0.24 0.34
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F

0.68

0.66

0.64 -

W=0.25

0.62 . 4 - B
0.04 0.14 0.24 0.34 0.44

Figure 14. Effect of the descending inclination angle
B on the Froude numbers,
(a) downstream, (b) upstream.

In this work the numerical algorithm of section (3)
has been used to generate critical flow solutions for a
variety of shapes of trapezoidal obstacle.

As a check on the numerical accuracy of our
solutions, two standard internal consistency checks
have been used. The first is to establish that the results
are sensibly independent of the number N and the
second is the computation of the height of the obstacle
W in two different ways.

The computed nonlinear free-surface profiles are
shown in Figures. (6), (7), (9), (11) and (12) for
variations of the obstacle parameters W,«,L and 8. For
small obstacle there is a region of moderate curvature
of the surface near the obstacle, followed by a
downstream region of uniform flow having slightly
reduced depth. As the obstacle becomes larger the
surface slope becomes large near the obstacle, which is
followed by shallow uniform stream moving at high
speed.

In Figures (8), (10), (12) and (14) we present values
of Froude numbers versus the different parameters of
the obstacle. The Froude numbers are very sensitive to
changes in W and less sensitive to changes of the
parameter L and weakly dependent on the angles § and
a. As the obstacle becomes larger, the downstream
Froude number increases and in the limit as W — oo
the F, » o and F; = 0.
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