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ABSTRACT

In this paper a cubic spline on spline method is applied in conjunction with an alternating direction
approach to solve a two dimensional diffusion equation. Theoretical error estimates and stability analysis
of the method are carried on. To illustrate the implementation of the method, numerical results for a test

problem are obtained.
I. INTRODUCTION

The diffusion equation arises in many engineering
problems such as; heat transfer, propagation of smoke,
pollution, just to name a few. Exact solutions for the
diffusion equation can only be obtained for certain
simple boundary and initial conditions. Therefore we
rely on numerical methods such as finite difference
methods, finite element methods, boundary element
methods and spline methods for the solution of the
diffusion equation subject to complex boundary and
initial conditions.

Cubic splines and cubic splines on splines together
with finite difference approximations have been used
for the solution of one dimensional spatial diffusion
equation [1], [2].

In this paper we consider the solution of two
dimensional spatial diffusion equation using cubic
spline on spline technique together with an alternating
direction approach. Consider the two dimensional
diffusion equation namely

2
du_#u Fu 6
ot 5x2 6y2

over the region defined by x € [0,1] and y € [0,1],
and subject to the initial condition at t=0

u(x,y,0 =g,y

and boundary conditions for t > 0
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u (O’Y)t) = fl (Y,t) u (X’ O: t) = hl (X,t)

u (l,y’t) = f2 (y’t)

2- DESCRIPTION OF THE PROPOSED
ALGORITHM i

and
u (x’ 1; t) = h2 (X,t)

Let the x interval be subdivided into n equal
subintervals of length h, such that
x;=ih i=1,2,...,n

Similarly the y interval is subdivided into m equal
subintervals of length k, such that

y; = Jk j=12,..m
The time step is denoted by L which leads to
tg=4qL q=12,..
Using an alternating direction approach we replace
the time derivative and the y derivative over half the

time step by their equivalent finite differences, we
obtain

__a_z_ll = llltj)q"lﬂ —uidug ._[u’lj*qu-zulnitq+ul-j'ln11 (2)
ax? L/2 k?

which can be written as
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d?U; (%)

RilS TR ©)

dx

where U, is considered as a function in x only at y =
jk and t = gL upon the above discretization given in
).

Over the following half time step we replace the x
derivative and the time derivative by their equivalent
finite difference approximations, to get:

Fu_Yig Yjaer Yenjqe1z 2% g0 o012 @)
dy? L2 hZ

which can be written as

d?u
59 6w,y ®

dy

where Uj is the corresponding function in y only at
x = ihand t = (q+'%)L.
Equations (3) and (5) can be reduced to a system of

1% order differential equations.
dy,
——a—x—-:Uz = Fl (3'3)
du,
W=F(U1, X) = F2 (3-b)
(3-a) and (3-b) can be written as
dU
P _
_HY."'FP (Ul,Uz,x) p_1;2 (6)
also
dU,
—=U, =G 5-
dy 473 (5-a)
du,
—d—y—=G(U3 ,¥) =Gy (5-b)
i.e.
dU
—2-G,U;,Uy) P34 O
y
D 20

Following the procedure detailed in [3], integrating
equations (6) trom x; ; to x; aty = jk and t = gL, and
denoting the resulting quantities by ¢, ; (u) we have

X X

du
$p; W) = [_d_xﬁdx— j F, Uy, Uy, x)dx=0)

Xi-1 Xi-1

X
9p @=Up iUy i1~ [ Fp(U;,Up,x)dx =0

1

Xi-1
p=12 ©)

Similarly, integrating equations (7) from y; ; to y at
x = ihand t = (g+'2) L we have:

Yj
‘I’pd(u)z'Up,j'Upd-l J' GP(U3,U4,Y)dY=0
Yj-1
p=34 (10)

There are various numerical schemes to evaluate the
above integrals in (9) and (10), among them is the
following scheme that involves the numerical
derivatives of F and G [4] leading to:

h
$pi W =Up;-Upsy- 5 Fpi + Fpin)

+h2(F’ -F’ . - ha(F” +F"'p,i-1)+0M7)=0
o8 miTF iV T g g P,
p=12 (11)
¥ . wW=U.-U . -£G.+G.)
P Pd - Tl 3 Ypd Pi-1
| P , k. .
8750 2076 pir1 " 155 G s *C Ri- D+ OK)=0
pP=34 (12)

For simplicity the subscript p will be dropped from
now On.

To determine the derivatives F’ and F” from F we
use a cubic spline S on F to obtain F’, then we use

another cubic spline S on S’ to evaluate F”.
Similarly to determine the derivatives G’ and G”

Alexandria Engineering Journal, Vol. 33, No. 1, January 1994




fiom G we use a cubic spline Z on G to obtain G',

ien we use another cubic spline Z on Z' to evaluate

CONSTRUCTION OF THE CUBIC SPLINES

Let S and Z denote cubic interpolating splines such

S () = F;

Z(@) =G,

fori =0,1,2,... n
forj =0,1,2,... m

Itis known that if

then S and Z are unique [5]
$'and Z' may be directly computed from F; and G;
using the well known formula [5]

S'i+l + 4 s'i + S,i_l

% Fiy1-Fop) (13)

' ' ' 3

At end points, approximations of first and second

-36F,+ 16 F3-3F,]+ O (h%)

2. 1
F2= = [2F, - 5F, + 4F, - F3] + O (%)

6= 1211( -36G,+16G5-3G,] + O(k*)

G2 = ki [2G, - 5G, + 4G, - G;] + O ()

Corresponding formulae for F'| and G’ are skew
symmetnc to that of F'_ and G’ Formulae for F 2
and G are symmetric to that of F, 2 and G, e The
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superscripts on S, Z, F and G above denote the order
of their derivatives.

4- CONSTRUCTION OF CUBIC SPLINE ON
SPLINE INTERPOLANTS

Let S and Z be cubic interpolating splines on the S’
and Z'- values computed in (13) and (14). The first

denvauves of SandZ at x; and y; respectively are
computed from a formula s1m11ar to that mentioned
above hence

S 11 +48 48 =%(S 1S i-p (19

with

-~ P 2

S ;=F,and$ ,=F;
o Z iy +4Z 42 [ =2@ (-2 ) ()
with

Z [=G2andZ =G>
5- ESTIMATION OF ERROR BOUNDS

In this section error bounds for the function and its
derivatives are estimated, that is estimates for

| Fy - §'; [ |F12' S i’HG'j
are to be determined.

' 27

Let e; denote the difference between F’; and S'; i.e.

e = F’ S’;, and dJ the difference between G’ and

ZI - GI I
f.et us cons1der the maximum norm, defined by

| F(x) | =max | F(x) |
lell = max |e]

0<i<n

1G@) | =max | Gw) |
y
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ld = max |d] s o
0<j<m ey t4e + e, = —-[ F () - F(!',»
In the following section we give some theoretical ~ Where X1 S W, g'i‘<- Xi+1
results related to these error bounds.

Furthermore, for any function W and V defined
Theorem 1:

the knots such that

If S and Z are cubic interpolating splines on F and G Wit1 +4W, + W, =V,
such that

by the maximum principle argument for differen
' ; ; 3 equation it follows that
S 48+ 8, = 3 E+r-Fp A7)

1
Wl <|W w — max |V|.
S',=F,, S2=F2 Let W = e and since by assumption e, = ¢, =0
therefore
S’n = F,n . Sn2 - Fn2
and lel < max —-pf @) - F(DI
2 o<i<n 4
! ! ’ - 3
ZJ+1+4ZJ+ZJ-1_—(G+1-G_]-1) (18) "ells_lls_h4"F5". (1'
with . - .
Following a similar argument, it can be shown tha
Z'o = G'o > 202 = G02
, lal < x4 16°]. @
Z,m = G'm , Zm2 - sz
ifien which completes the proof.

Furthermore, error bounds on the cubic splines on

p splines used to interpolate the derivatives of S andZ

le | =om* are derived in the following theorem.
Id | =0k% Theorem 2:
Proof

Let S and Z denote cubic interpolating splines on §
and Z'; computed in (17) and (18). If the ﬁrst

denvatlves S'and Z' “at X; and y; are computed fron
(15) and (16) then:

By subtracting F'; | + 4F'; + F';; from both sides
of equation (17), we get

_ 3
€i+1t4ete  =F  +4F +F' -~ (F4,

-Fip)

Using Taylor’s expansion, this equation leads to;

IF2-5 | = 0@,

2 = @

0 ().
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gtion (15) and let
F12 '§ i’ = Ei then;
— 3 ’, ,
Ei+l+4Ei+Ei-l"'E(S ie1~S j1)

2 2 2

The right-hand side of the above equation can be
Written as:

'% (i41 - S'u) + Foipy + 4 F2 + F4
- 3 [(S' FI SI F/
= 5 e - Flig) - iy - Fipl

. ,
+ [-F Fip - Fip + Py +4F2 + F4 L.

Expanding the terms in the 2 bracket using Taylor
ies expansion about the point x; up to order h* and
jing the result given by equation (19) in theorem 1
Jove, we arrive at:

| 3 {4 !

itich completes the assertion of the given theorem.

ibtracting F, , ; + 4 F;2 + F2_| from both sides of
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6- COMPUTATIONAL PROCEDURE

Substituting F;, F;, G'; and G;® in equations (11)

and (12) by 8';, S ;,2*;and Z'; respectively we obtain
_ h h? o g
¢; @)=Y~ (Fi+Fi-1)+—16 S-S50

h3

S +S . 6 21
120(3, S - +0@) (21)

k S
\I'J (U)=uj"u_i_1‘—2-(Gj+Gj_1)+ —16 (ZJ -Z j-l)
K = -5 - 6
- eee(Z . +Z j—l) + O (k) (22)

120 J

In order to solve the system of equations (21), let
¢; (W) = V; () + W; (u), (23)

where

Vi=u-y - -121 (F; + Fp), (24)

‘ h = .= -
W, = 1116 N R A

Using the modified Newton’s non-linear iterative

technique, we have; °

uk+D) = y® 3l vy ¢ @9 k =0,1,2,...26)
where J (V) is the Jacobian of the values of V given by
equation (24).

In a similar way the system of equations (22) is
solved. The convergence of the modified Newton
technique is proved in [8]. It is evident that J (V) has
a sparse structure and has only few elements per row.
Various sparse matrix techniques can be used for the
solution of equation (26), for details of such techniques
we refer to the work given in [9].
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7- STABILITY ANALYSIS OF THE METHOD

Round-off errors cannot be avoided due to the use of
a finite number of decimal places in all computations.

In order to study the stability of the numerical
scheme the Von Neumann technique is applied. The
round-off errors, that is the difference between the
exact numerical solutions and the computed ones at
each node are assumed that they can be expressed as a
series consisting of the product of an exponential
function in time multiplied by a harmonic one in space.

Due to the linearity of the problem dealt with a single
term of the series can be considered.

Let us denote these errors for the function U, the

cubic splines S’y and S " over the first half of the time

step by Eup, E s and E—: respectively (p = 1,2).
P

Following the above argument we take the following;

1i8h el_]‘yk eqazL

E, =a,¢
P

Box = bp eliBh oijvk gqaL

iiﬁheij‘ykeqaL

E- =cp e
p=12

where a, bp,
and 1=y/-1 .
These expressions are known to satisfy similar
equations as (13), (15) and (21) respectively.

Hence it follows that equations (13) and (15) lead to

Cpr O, £ and vy are arbitrary constants

[1+s(Cosyk~-1)](1+CosBh)(11Cos?>8h+68CosBh+101)*

b, @ + Cos fh) = 131 a, 1 Sinh

by + Cos hye?l’? = &al ? Sin gh

[2-1)- 2 (Cos v k1),

¢y (2 + Cos ph) = Ebl i Sin gh,

¢, (2 + Cos ph) = sz 1 Sin gh,

From equation (21) we get

~h2
2 2,1 Sin Bh - h a, (1+Cos /3h)+i£5_b1 Sin ft
LU 0 ol
s -+ =0,
6001( os h)

2

2451 Sin 0 e - 2 ay(1+Cos g2

_3 (Cosy k-1)]

3
+1_b281n6h eod2. B e®L/2¢,(1+Cos £h)=0. ()

The above system of equation (27-32) leads to:

eaL/2=
(1+CosBh)(11Cos?Bh +68CosSh +101)%+800r(1-CosBh)(2 +CosSh)*
where r= L and s = _I;
h2 k2

Over the second half of the time step a similar system of equations is obtained leading to:
[1+r(CosBh-1)](1+Cosyk)(11Cos?yk+68Cosyk+101)?

eozL/2=

(1+Cosyk)(11Cos?yk +68Cosyk +101)% +800s (1-Cosyk) (2 +Cosy k)*

Hence, the amplification factor e®

eoL _ [1-5(1-Cosyk)]

over a complete time step is;

[1-1(1-CosgBh)] &)

{+ 800s (1 -Cosyk) (2 +Cosyk)*

1+

8001 (1 -CosSh)(2 +CosBh)*

(1+Cosyk)(11 Coszyk +68 Cosyk+ 101)2
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For stability, that is in order that these errors do not
grow exponentially large with time, the following
stability condition is imposed, namely | e®& | < 1.

Using a polar plot for the values of |e*| in equation
(33) as Bh varies from 0 to 27, and for different values
of r, s and +k; it was found that all orbits lie within
the unit circle which represents
le*l | =1. Therefore the numerical scheme is
unconditionally stable.

g ...~~"~'—-s..,_,_~.
! N, __.___,__3
o’ N
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Polar plot of the amplification factor [e™"|
(@) Je] =1

(L) with r = s = 0.5 and vk = =/4
(¢) withr = s = | and vk = #/4.

8- NUMERICAL RESULTS

In order to illustrate the above method a simple test
example with known analytical solution is considered.
Equation (1) is solved with the initial condition at t =0

0<xx<l,
0<y<l,

u(xy, 0)=SinwxSinwxy

and the boundary conditions for t > 0
u@©,y,) =u(ly,t) =0,
ux,0,)=ux, 1,t) =0,

the spatial steps are chosen such that h = k = 1/40
and the time step L = 1073
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The results are found to be in very good agreement
with the analytical solution

u=e 2%t Sin7 x Sin 7y

The following table displays samples of these
numerical results along with the values of the analytical
solution.

x y t = 0.005 t = 0.01

u-Num u-Anal u-Num u-Anal
025 | 0.4530211 |0.4530092 |0.4104563 |0.4104345
0.5 ]0.25 |0.6406679 [0.6406516 |0.5804715 |0.5804420
0.75 0.4530203 ]0.4530093 |0.4104549 ]0.4104346
0.25 0.6406680 {0.6406516 {0.5804719 }0.5804420
0.5 0.5 |0.9060411 |0.9060180 |0.8209105 |0.8208687
0.75 0.6406678 |0.6406518 [0.5804715 |0.5804421
0.25 0.4530204 |0.4530093 10.4104551 |0.4104346
0.5 |0.75 10.6406678 |0.6406518 |0.5804713 |0.5804421
0.75 0.4530208 |0.4530095 |0.4104559 10.4104348

9. CONCLUSION

A cubic spline on spline method is applied together
with an alternating direction approach for the solution
of a two dimensional diffusion equation. The stability
analysis of the method shows that it is unconditionally
stable, thus no restrictions in the choice of h and k (the
space steps) and L (the time step) are necessary to
ensure stability. Theoretical error estimates show that
the method leads to approximations of at least a third
order.

The numerical results for the example considered
show that this method gives very good approximation
for the solution of the diffusion equation.
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