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ABSTRACT

This work gives the solution to the problem of bending plates with mixed (discontinuous) boundary
conditions in the case of elastic clamping and elastic support along the boundary. Muschelisvili’s method
has been used to determine the deformation of the plate for the case of non-vanishing Winker’s constant

and the constant of elastic clamping.
INTRODUCTION

During the last few years, there has been an apparent
growing interest in the problems of structural analysis
of plates with mixed (discontinuous) boundary
conditions. These problems can be solved in many
ways: by reducing the problem to a system of
Fredholm integral equations of the first kind [1], by the
method of analytic functions [2], or directly by
integrating the integral equations of structural analysis
of plates considering both elastic clamping and elastic
support along the boundary. The present article
contains the solution to the problem of bending plates
with mixed boundary conditions, the case of plate in
which part of it is elastically clamped and the rest is
elastically supported. The solution is reduced to a
system of Fredholm equations of the 2nd
kind which in certain particular cases, becomes
Fredholm equations of the 1st kind. The formulation of
the ditferential equations is given in section (1) while
the transformations to integral equations are presented
in section (2).

In considering the case of bending a plate by a
distributed load acting perpendicular to its middle
plane, let us assume that this middle plane is horizontal
and contain the x-and y-axes, while the z-axis is
directed vertically downward. We denote by q=q(x,y)
the intensity of the load which is a function of x and y.
Let us assume some approximations as follows:

1. The plate’s thickness (h) is constant and its medium
remains also constant so that the points make only
the displacements u = u(x,y).

2. The deformation 7, is very small independent on z
and can be neglected.
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3. The perpendicular to the plane remains so, even
after deformation.

4. There will be no change in the plate’s energy
because the stresses 7,, 7,,, and 7, are equal to the
remaining stresses.

The above assumptions are considered in order to
apply the thin plate theory of small deflections.

1.  The differential equations of the boundary value
problem:

Suppose that the coordinate of points on the boundary
have the 4 derivatives w.r.t. the arcs length s. The
boundary can be divided into 2n arcs L, which take the
limits from a; to a,,; where k = 1,2,3,... 2n, with

Dp+1 T 4
Then:

n

Lo -3 I,

n
L® = E | ’

k=1 k=1
This means that the summation of the parts of the
curves Ly, and L,, are denoted by L and L@
respectively. According to Kirchoft’s theory of the
bending plates [3], the function u(x,y) must satisfy the
equation:

AAu = (1.1)

q
D

D45
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The boundary conditions are:

M) =C,a K =0

onL® onL@® (1.2)

u=0 M (u) =0

where C, is the Winkler’s constant, « is the angle of
rotation of the plate (unclamped), M and K are the
momment and force functions of u given by:

M()= 0 Au +(1-0)[u,cos?6+2u, cos Osin O+u sin?0] (1.3)

and

K(u)= d(;“ +(1- 0)%[u,,cos29 +%(u” -u )sin26]  (1.4)

and the expressions for K and M multiplied by -D,
where D is the flexural rigidity of the plate, n is the
outward normal to L, 6 is the angle between n and x-
axes, o is Poisson’s ratio. We can write the above
conditions as follows:

G w=M@+C;a=0

28 g
as

onL(®D (1.5)

We can obtain two special cases from this boundary
conditions; if C;= oo, the edge of the plate is clamped,

this means the boundary condition are
u=0 |, L. 0
on

When C; = 0, the edge of the plate is simply
supported and the boundary conditions will be written
in the foormu =0, M = 0

Because u = 0 on LM we can substitute % =0 also;

The angle « can be approximated as follows:

m«:%:%m(x,n)"’%cos(n:)')
=%cose+@sine
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Because « is considered to be small i.e tan o ~ «
then

tana=a=~gu;cos9+%sin6 (1.6)

so the boundary conditions (1.2) and (1.5) can be
written as:

G,(u) = -D{oAu +(1 - 0)[u,,cos’0 +2u, cos sin 8 +u, sin’ 6]]

+ O (2 cost + Psing) = 0
ox 9y

i (1.7)

@l

After multiply the 1st part of equation (1.2) by i and
integrating over s, and adding the result to the 2nd part
of (1.2), one obtains:

G,(U) = MU) + [K(U)ds +Cy  (1.9)

The general solution of equation (1.1) takes the form

[51:
u=U+W (1.9)

where W is the special solution and U is the harmonic
function satisfying the harmonic equation:

AAU =0 (1.10)
The function W is supported to be a convergent
integral function and its partial derivatives up to the
3rd order are continuous functions in the region
(S+L), implying that the load function q = q(x,y) is
also a convergent integral function. This is enough for
the load function q to satisfy the Holder-condition [4]
in the region mentioned above. Instead of using u in
equations (1.7) & (1.8), we use its sibstitute equation
(1.9), where U takes the form [5]:

U = 2Re[zd(2) + x(2)] (1.11)

where ¢(z) and x(z) are homogeneous functions,
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V(@ = [[dx@)/dz)] = x' (2)

This form of U can take an easier and preferable form
as:

U .oU - _
=+ = + + 1.12
3 o z9(@) + 9@ + ¥ (1.12)

The function ¢(z) is determined as well by an arbitrary
complex constant especially if U(x,y)=0in S, and this
together with equation (1.12) implies that [6,7]:

¢(2) = iCZ + v
x@) =YZ + b (1.13)
x@ = - ¥

where b is another arbitrary complex constant, then
one can apply without approximation, the general
condition on the function ¢(z) which is Im ¢’(0) = 0.

We would now like to solve this problem through the
substitution (1.9) into (1.7) & (1.8), we obtain:

G,(W)=-D[oAU +(1 - 0)[U,,c08?0+2U,_cosbsind +U,,Sin’6]](1 14)
+ cl(Uxoose + Uysine) .

on L®

au__ W (1.15)
3 2

M(U)+i [K(U)ds = -[M(W) +i [K(W)ds] +iCy,onL®  (1.16)

Substituting equation (1.11) into (1.15) & (1.16) we
obtain:

2o —1)Re[§(-m<p(t) o) +FO1+2C,Imlt (to'®+ 0O+ O]
=G,(W)
(1.17)

W (1.18)

Ret t5() + @) + YOI = —

Dividing eq. (1.17) over C; and multiplying (1.18) by
i, then adding the result, to equation (1.18) we get:

20 -0) prd _ + 30+ B
< Re[ - mé(® + ¢°() + ¥(¥]
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ow

~2Im[t} " ® +$() + $O] =EI—GI(W) i 49
1

Os

Re[IEH M + ¢O + FO = —%‘%ﬁ"— (1.20)

After substituting eq. (1.11) into (1.8), the boundary
condition on L@ takes the form:

d 7 + B (0] = 1 " .
SO+ E Ol 5 IMW) x{x(wm i, (1.21)

Integrating over t, one gets:

-me() +i¢ )+

-1 +i +iCot+ By, (1.22)
2_(1_:7)[ j [M(W) +i I K(W)ds]dt+iCyyt + By

8 8
where t is a variable point on the curve Ly = ay
3, 41 » and s the length of the arc connecting the point
ay, to the point ay , ;, C,, are unknown real constants
on the curve L, and C,, are generally complex
undermined constants on L.

The purpose of this work is to find the functions ¢(z)
& x(z) which both are homogeneous in S and satisfy
the conditions (1.20), (1.21) and (1.23). Integrating
equation (1.2) over s, we obtain

Al—c‘;" Re[i(-md®)+d ® + $(©

1

- [ W-me® + 90O + $O)Ms
S2-1
(1.23)

+ 2 [ HSO + ¢®) + $OIds

Sy

o1 . dW
- [ Gom - iShw

2. The transformation to an integral equation

We will consider the two functions ¢ (z) and V(z) as
follows [8].
w(t)dt

i @.1)

@) = —i—f

L
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) (t)at

-3 2.2)

fw(t) - 1

f tm(t)dt
L -2 2ni . 2ri

&-z¢

where w(t) = w,(t) + iw, (t), is function of t, satisfies
Holder-condition on the curve L. Suppose that w(t) is
continuous function and w’(t) is its first derivative, so
it is possible to transform the boundary conditions
(1.20), (1.21) and (1.23) one finds:

1 - P T (1+m)t,
5(1 -m)(t, @ (t)+t w(t))+2Relt K(t)-
L

oM -to®

r -t

L(1+m) 2.3)

2ni

dt] =g,(W)

1+ — 1 3 P -
)+l - ;Ra[tol{(to) + [ Umott) -K(t)ds

%1

_Cl [g L(l) (2.4)

" om0y Bt ]

and
- mo(t) +K(t) =f(t) +iCyt + B, on LO2.5)

where

(2.6)

m t-t, 1 —— t-t
K(to)=mfw(t)dlog el f(o tyd
L o L -

f) = — L | [ M) + i [ Kowydsie 2.7)
2(1 - o)
) S Sk

It is easy to prove that the equations (2.3), (2.4) and
(2.5), which are used to determine w,; (t) and w, (t)
represent a unique group of integral equations whose
parameters are discontinuous and whose right hand
sides contain unknown functions as well as fixed
constants oy | , Coy and By From (2.3) and (2.4),
we obtain:
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to®) -t,od <
L LOW 400 4 | 1peike,)
L m

LM T s
21ti(1+m)s£t (me(©) -K(t)ds]

) iC(1-m)
-t, 2(1-0)(1+m)m

“wdt

]' &3¢ m)w(t°>+“;’,“) 2 KOs

(2.8)

-g v e, LO

where
+_ 4 (1-m)

88t o g 2.9)

+ 1 -

Uy = 2—1(;(1—'_% 2k-1 (2.10)

The equation (2.3), (2.4) and (2.5) are used to
determine w; (t) and w,(t), [w(t) = w((t) + iwy(t)]
represent a unique group of integral equations whose
parameters are discontinuous and whose right hand
sides contain besides the known functions, the
undetermined contants o,y 41 , Cyy and By

By using the matrix notation, we can write down this
system of integral equations in the form of a single
equality as follows:

B(t
AQYQ() + —’(HQ [ %‘E +M(t) =F(t) + B )(2.11)
L (]

where {(t) = (w{, w,) is the required vector, A and B
are known matrices, 8 = (8, B,) is a vector whose
components contain the undetermined constants

0 0 -icos® -isin0
= = ()]
A [—sinﬂ cosB}’B [ 0 0 L7 @129
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and

A=

-m O
0_

] 5= Y%Lo @)
00

We also obtain the following relations:

M) = ——Re[t K@) + (1 m)) f imolt) - K(t))ds]

iC,(1-m)
m(l -o)(1 +m)

f [—(1 m)w(t o)+“m f—— +K(t)]ds

oo ft'.')dlogt L L® (2.132)

/ flmot) - K(t,)ds]

M,(t) = —iRe(iK(to) .
Sak-1

c
5 om0t (2.13b)
-] f it La-moeey f & K1

e
F, = g*,F,= - (2.14)
1785 2m(1 - 0)
R C
ﬁl Qo 1,[32 Zm(ll—o) 2%-1 (215)

where
M=M, +i M,, F=F, +iF,, B=B,+iB, (2.16)
the following relations can also be obtained:

iC

F, +iF, = g* - - L® (2.17
1 2~ 8 2m(1 - o)g3 @.17)

F, +iF, = f(t) L® (2.18)
ﬂx"“iﬁz:“;k—l - S L® (2.19)

2m(1 _—;)- aZk-l
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B, +iB, = iCyut + By L® (2.20)
It can be seen that M = (M, , M,) represents a vector
whose components are integral parameters of Fredholm
type and the components of the vector F = (F, F,)
are known through the particular solution W and
vanish when W = 0 .1t is also easy to write down the
explicit expressions for the components of M and F.
Denote:

S*=A+B , D*'=A-B, g=8"D

from expressions (2.12a) & (2.12b), we have

L® (2.21a)

l— cos20 - sin26}
g =

- sin28  cos26

10
= L®

As can easily be verified, let det $*# 0, det D* #0,
everywhere on L, and in consequence to system (2.11)
may be applied the existing theory of systems of
singular integral equations with discontinuous
coefficients [9]. For the application of this theory it is
necessary to determine the roots of the equation (I is a
unit matrix)

(2.12b)

det {gl ¢+0)gt-0)-I\} =0
at the points of discontinuity of the coefficients of the
integral equations. These are the points of change of

the boundary conditions a (k = 1, ,m ). From
(2.12a), (2.12b) we obtain:

det {g! (b, + 0) g (b,-0) - I\} = N1

det {g! (¢; + 0) g(c;- 0) - N} = N2 - 1

k=1,.,m,j=1,.,m)
CONCLUSIONS
The advantage of the present study is the

transformation of the differential equation into a
singular integral of Fredholm type, containing the
unknown complex valued function W(t). From this

D 49

S
12

T

55



EL-HAMAKYA and OKAZ: Benging of Plates Under Certain Boundary Conditions

case, it is also easy to obtain the solution of two cases:
(i) if C; = 0 the plate is simply supported [8] and (ii)
if C; = oo, the plate is fixed, these two cases were
studied by [8].
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