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ABSTRACT

In this work the one dimensional problem of a solid sphere whose surface is traction free and subjected
to a given time dependent temperature distribution is considered within the context of the theory of
generalized thermoelasticity with one relaxation time. Potential function and Laplace transform techniques
are used to derive the solution in the transformed domain. The inversion of the Laplace transform is
carried out using the inversion formula of the transform together with some techniques for the
acceleration of convergence. Numerical results are given and represented graphically. Comparison is
made with the solution of the corresponding coupled problem.
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longitudinal waves

022 = ulp square of the velocity of transverse
waves

Cg specific heat at constant strain

k thermal conductivity

t time

T absolute temperature
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u’ component of the displacement
vector in radial direction

o coefficient of linear thermal
expansion
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o’ components of stress tensor

i relaxation time

INTRODUCTION

The theory of generalized thermoelasticity with one

relaxation time was developed by Lord and Shulman

[1] for isotropic media and extended by Dhaliwal and
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Sherief to anisotropic bodies. This theory is based on
a modified law of heat conduction to replace Fourier’s
law. The equation of heat conduction of this theory is
hyperbolic and therefore eliminates the paradox of
infinite speeds of propagation inherent in both the
uncoupled and coupled theories of thermoelasticity. For
many problems involving steep heat gradients and
when short time effects are sought this theory is
indispensable. The fundamental solutions for the
spherically symmetric and the cylindrically symmetric
spaces were obtained by Sherief [3] and by Sherief and
Anwar [4], respectively. A two dimensional
axisymmetric problem for a thick plate was considered
by Sherief and Hamza in [5] where also a full
discussion of wave propagation in generalized
thermoelasticity is presented.

FORMULATION OF THE PROBLEM

We consider a homogeneous isotropic thermoelastic
solid sphere of radius a’ whose surface is taken to be
traction free and subjected to a known time dependent
temperature distribution. Due to the symmetry of the
problem all functions are dependent on the radial
distance r only and the displacement vector will have
only one non-vanishing component in the radial
direction.

To simplify the formulation of the problem, we
introduce the following non-dimensional variables

T = ¢r, a= ¢ma’, u = ¢ qu’,
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t = clznt’, Ty = clznr’o,
0y =0/p and 6 = (T-T)T, .

In terms of these non-dimensional variables, the
equation of motion takes the form [3]

20%u _ 8 [du 2u a6
—_ — 1
63t2 Barl:ar r]bar ()

The equation of heat conduction can be written as

vﬂe={i+ro—az—}9+g{i”oi}[i‘l*z‘q]’ @
at at%j| or r

where V2 is Laplace’s operator given by

v? = +
ar?

Qﬁ)
- N

o
ar
The constitutive relation takes the form
o =6 98 .42(52-2)% -bs. 3)
or r

Introducing the thermoelastic potential function ¢
defined by the relation

= C))

and integrating the first resulting equation with respect
to r, we obtain

B2 v2 -bo-g2 &9, )
3t
v2g=1 9 d rov2al? (©6)
0 =522 ¢-499 4, )
ror

Using equation (5), equation (7) can be written in a
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simpler form as

We shall assume that all the initial conditions of the

problem are homogeneous. The boundary conditions of

the problem are taken as follows:

(i) The mechanical boundary condition that the surface
of the sphere is traction free that is

a.fat) = 0. 9
(i) The thermal boundary condition
q:(a,t) = h [6(a,0) - F)] , (10)
where g, is the component of the heat flux vector in
the radial direction, h is the coefficient of heat transfer
on the surface of the sphere and the function F(t) is the
temperature of the surrounding medium.
SOLUTION IN THE TRANSFORMED DOMAIN
Taking the Laplace transform defined by the relation

£f6)=2L[f1)] = Le'“f(t)dt,

of both sides of equations (5), (6) and (8) and using the
homogeneous initial conditions, we get

(v2-52)$=cb (1)

(V2—s—'ros2)5=g(s+rosz)V25, (12)

|'e—|

(13)

=675 ¢-;

D

l'

where ¢ = b/;32 :

Eliminating 6 between equations (11) and (12), we
obtain the following equation for ¢

(V-1 +7,+er )s? + (1 +€)s]V2+53(1 +7,8)}=0.
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This equation can be factorized as

Vk (V2§ =0, (14)

where +k? and +k)?
characteristic equation

are the roots of the

K-[(1+7,+er )s?+ (1 +€)s] K2 +s3 (1+7,8)=0 .

The solution of equation (14) can be written in the
form

where ¢, is the solution of the equation
(Vk2)¢; = 0, i=1,2.

These equations can be solved to give

_ 2
$=—S 3 AL kD), (15)
i=1

-

where I, denotes the modified Bessel function of order
n and A,, i=1,2 are parameters depending on s to be
determined from the boundary conditions.
Substituting from equation (15) into equation (11), we
obtain

2
=_E 2 Lk, (16)
i=1

.

From equations (13) and (15), it follows that

4k (17
ﬁzszll,z(kir)—T‘Iyz(kir) ,

2
- c
o_=—"_Y A.
n\/r_g '

where, we have used the recurrence relation of the
modified Bessel functions, namely

dI;p(kr) 1

Finally, to obtain the displacement we substitute from
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(15) into (4), to obtain

2
=% Ak Lp(kr)- (18)
i=1

=

The boundary conditions (9) together with equation
(17), yield the equation

ij A, {B*s?al (K a) -4k Ly(k;2)}=0. (19)

i=1
Applying the Laplace transform to both sides of (10),

this condition takes the form

4,(2,5)=h[6(a,8)-F(s))- (20)

We shall use the generalized Fourier’s law of heat
conduction in non-dimensional form, namely

qe*7 aqr__a_e_ 2h

°3t ar

Taking Laplace transforms of (20)-(21) and eliminating
g,, we obtain

]

a"_ha” s)(F-9) ,forr=a. (22

Using equations (16) and (22), we obtain

EA(k

[k Lp(k;a) +h(1+7,8)1 (K a)](23)

= a h(1+7,5)F(s)
Equations (19) and (23) can be solved to give

h(1 K
A,- (1+< s)\/_ (s)[pz Zal,p(k; 8) -4k, (K, 8) |

-h(1+%,5)/aF(s)
A

A,= [B2s?al (K a) -4k L,(k ) |»

where
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A=K} [82s2al,,, (kya) - 4k, Iy (Kya)l[k; Ly (ky @) + h(1 +7,8) T, (k;2) ]
~kF [B2s%al, (kja) -4k, Ly (kga) | [Kylyp(Kya) +h(1 +7,5) 1, (Kya) ]
+s2[FPs2a+h(l +7,8) 1 [kl (ky2) Ly (Kpa) ~ky I (kpa) Iy (k) 1.

This completes the solution of the problem in the
Laplace transform domain.

SOLUTION IN THE PHYSICAL DOMAIN

We shall now outline the method used to invert the
Laplace transforms in the above equations. Let {(s) be
the Laplace transform of a function f(t). The inversion
formula for Laplace transforms can be written as

d+1c0
ft)=—L_ [e“‘¥(s)ds,
8l 5 e

where d is an arbitrary real number greater than all the
real parts of the singularities of {(s).
Takings = d + iy, the above integral takes the form

; _edt“’ ity Toq s
("‘2—[ e’y f(d+iy)dy-
m

This integral can be approximated by [6]

dt @ . -
ft)=2— Y eMAYf(d+ikAy)Ay+Ep»
27!' k=-o

where Ep , the discretization error, can be made
arbitrarily small by choosing d large enough [6].
Taking Ay = =/L, we obtain

dt *®
f(t)=2_

ikwt/L ¢ .
2Lk=_me f(d+ikw/L)+Ep

This can be written in the form

dt| - = -
f()=—[1E (@) +Re T ¢ F(d +ikn /L)y,
k=1
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The above series can be shown to be convergent for
0<t<2L[7].
This series can be written more concisely in the form

f(t) = f () + Ep,

where

oo
fo®=%co+y, ¢, for 0 <t <2L, (24
k=1
and

dt . _
: ck=f'L_ Re[e‘k’”’L f(d +ikw/L)], 29

Ep, the discretization error, can be made arbitrarily
small by choosing d large enough [7] .

As the infinite series in (24) can only be summed up
to a finite number N of terms, the approximate value
of f(t) becomes

N
k=1

Using the above formula to evaluate f(t), we introduce
a truncation error Ey that must be added to the
discretization error to produce the total approximation
error.

We shall now describe the e-algorithm which is used
to accelerate the convergence of the series in (24). Let
N be an odd natural number and let

m
Sm = E Ck7
k=1

be the sequence of partial sums of (24). We define the
e-sequence by
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€om =0,€, =5, , m=123,..
and

- N 1 B
en+l,m—en—1,m+1 ,h,m=1,2,3, ..

€

n,m+1 - €n,m

It can be shown that [7] the sequence

€11 €31 05--~2 EN

converges to f(t) + Ep - ¢o/2 faster than the sequence
of partial sums
S, m =123 ...

The actual procedure used to invert the Laplace
Transforms consists of using equation (26) together
with the e-algorithm. The values of d and L are chosen
according the criteria outlined in [7].

NUMERICAL RESULTS

In order to illustrate the above results graphically the

function F(t) which is the value of the temperature of
the surrounding medium was taken as:

F(t) = F, exp(-t) H(),

where H(t) is the Heaviside unit step function and F
is a non -dimensionalization constant. At room
temperature the value of F_ is approximately equal to
1/300 [6].

The copper material was chosen for purposes of
numerical evaluations. The constants of the problem
were taken as [3]

€=0.0168, §>=3.5,7,=0.02, a=1 and h=1.

The computations were carried out for two values of
time, namely t=0.1 and t= 0.5, respectively. The
numerical technique outlined above was used to invert
the Laplace transforms in the above equations. The
computations were performed for both the coupled
theory (7, = 0) and for the generalized theory
(r,# 0). The temperature ©, the stress component o,
and the displacement component u are evaluated. The
graphs of these functions are shown in Figures (1-3),
respectively.

Coupled
Genereailzed

Figure 1. Temperature distribution.
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Figure 2. Radial stress distribution.
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Figure 3. Displacement distribution.
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It was found that for large values of time the results
obtained by using either the coupled or the generalized
theories are quite similar. The case is quite different
when we consider small values of time. Since the
coupled theory predicts infinite speeds of wave
propagation the effect of heating at the boundary is
transmitted instantaneously to all parts of the medium
so the solution is not identically zero for any value of
t > 0 (though it may be very small). For the
generalized theory, however, the waves take a finite
time to be transmitted.

It should be noted here that Figures. (1-3) are
multiplied by a factor of F,. The maximum value of 6
reported in Figure (1) is about 0.5 for t = 0.5. This
should be understood to mean a value of 0.5 times F,
or 0.001667 in accordance with the fact that we are
dealing with a linear theory.

It was shown in [S] that in generalized
thermoelasticity, the thermal and mechanical effects are
transmitted by the action of two waves. The first of
these waves is mainly thermal in nature and has a
velocity of 7.07 units, while the second wave is mainly
mechanical with a velocity equal to unity
approximately. Thus, for t=0.1 the thermal waves
travels a distance of 0.707 starting from the surface of
the sphere (r = 1) and the wave front is at r=0.293.
This explains the jump in Figure. (1) where it is clear
that for r < 0.293 the temperature is identically zero.

The other two curves are more affected by the arrival
of the mechanical wave. We note a change in each of
these functions at the location of the front of the
mechanical wave. r = 0.9, r = 0.5 corresponding to
t=0.1 and t=0.5 , respectively.
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