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The equation of motion of an n-degrees of freedom non-conservative mechanical system is represented by a
Vector-Matrix differential equation. The Matrix method is usually used, where the natural frequencies and
natural modes of vibrations are obtained, to solve this equation and a similarity transformation is always
required to obtain the steady state solution. The purpose of this paper is to propose a solution, based on the
Cayley-Hamilton theorem, to the equation of motion of n-degrees of freedom discrete non- conservative
mechanical system. The similarity transformation is not required in the proposed method, and in contrary to
the classical matrix method, the computations to be carried out are moderate, thus enabling use of personal
computers. Simulated examples are presented to illustrate the results given in this paper.

I. INTRODUCTION

Vibrating systems are divided into two types, discrete
and continuous [1]. A discrete system is one whose exact
equations of motion may be expressed as a set of ordinary
differential equations and, for the small oscillations with
which we are concerned, the equation will be linear and
have constant coefficients. Discrete systems will then be
characterized by having a finite number of natural
frequencies and corresponding modes of vibration.
Although exactly discrete systems never occur in practice,
many physical systems are discrete for most practical
purposes [7,8].

Consider a discrete non-conservative mechanical system
having n-degrees of freedom. A set of generalized
coordinates are denoted by x;, X5, ... , x, where the
datums configuration, in which all these coordinates
vanish, is assumed to be one of a stable or neutral
equilibrium. The Lagrangian equations take the form

d aT aT aU av
— (=)~ — * — =F z
d:(ax,) ox, 0x, ax ¥ (1)

r=1,2,.

where t denotes the time, T, U and V are the kinetic
energy, the potential energy and the dissipation function,
where

—

n
T=_-ZL
2|=
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In equation (1.1), the quantities F|, F,, ... , F; are the
generalized forces or driving forces which produce an
excitation of the system. In equation (1.2), the quantities

and d are constants, they are known as the mass,
the sui’fness and the damping coefficients of the system.
If we substitute the expressions for T, U and V into
(1.1), then we write n equations of motion which can be
written in the Vector-Matrix form as

Mx + Dx + Kx = F (1.3)

where M is the mass matrix, K the stiffness matrix and D
is the damping matrix. They have the general form

m; mp .. mp K o Kin
il My Myy ... L B e
my; .. .. mg, Bl - B oo
Dif) e s dy, 9
T
SR d,,

The displacement vector x, and the force vector F have
the general form
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X F,

X = . F = . (1.5

xn F, ]

The solution of equation (1.3) is usually obtained by the
matrix method, where the natural frequencies and the
corresponding natural modes of vibration are obtained,
and a similarity transformation is used to the diagonal
form, in the case of distinct eigenvalues, or to the Jordan
canonical form, in the case of repeated eigenvalues. For
a complete discussion of the matrix method the reader
may referred to [1].

However, the determination of the natural modes of
vibration corresponding to each natural frequency and the
using of similarity transformation require a computational
effort and a large memory space in the digital computer.
The purpose of our paper is to propose a method, based
on the Cayley-Hamilton theory which is presented in
Section 2, for the solution of equation (1.3). In contrary
to the classical matrix method, the computations to be
carried out are moderate and the similarity transformation
is avoided in the proposed method.

2. GENERAL RESULTS

In this section we state the general results which have
been used for simulations.

Result 2.1

For the system described by equation (1.3) satisfying
1. The matrices M and K are symmetric
2. The matrices M and K are positive definite
3. The force vector F = 0.
4. The matrix D = 0.
Then, the frequency equation has only real positive roots.

Proof

Note that the equation (1.3) in this case has the form
Mx + Kx =0 (2815

which represents the free oscillations of a conservative

system. The eigenvalues A\ (the square of the natural

frequencies) and the eigenvectors u (the amplitude vector

of the natural modes of vibration) are determined from
the equation
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(K-AM)u =0 2.))

The frequency equation is given by

det (K-AM) =0 23
where A = «? , and w denotes the frequency.
Let A be a complex root of equation (2.3) and u #0is
a complex vector corresponding to A. Then \* 1s alsoa
root of the equation (2.3) with complex vector u’, where
X" is the complex conjugate of \. Define the quadratic
form

( ii m; u; 2.9

i=1 j=1

Since A # A°, and the orthogonality property of the
eigenvectors holds in this case, it follows that

M(u,u*) =0

but this contradicts the fact that, if M(u,u®) isa
positive definite quadratic form and u # O is an arbitrary

complex vector, then M(u,u*) > 0.
It N\ is real, then also the eigenvector u = O that
corresponds to it may be chosen real. From equation

(2.2) ku = AMu. Then the quadratic forms k(u,u)
and M( u, u) are related by the equation

k(u,u) = )\M(u,u),
then A= M >80
M(u,u)

Thus, the frequency equation (2.3) has n positive real
roots )v, to which there correspond real positive

frequencxes wj \/ . and real eigenvectors ik |

Lo 2
Result 2.2

For the system described by equation (1.3) satisfying
. The matrices M, D and K are symmetric
2 The matrices M, D and K are posmve-deﬁmte
3. The force vector F = 0.
Then the roots of the frequency equation have negative
real parts.
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Proof
Note that the equation (1.3) in this case has the form
Mx + Dx + Kx =0
which represents the free oscillations of a non-

conservative system. The eigenvectors u are determined
from the equation

(Mp?2 +Dp +K)u =0 2.5)
The frequency equation is given by

det (Mu?2 +Dp +K) =0 (2.6)

which has n-pair of roots. Equation (2.5) can be
expanded to

n
E (muﬂ. [l. + ku}uj =0, (27)

j=1
1= 152 .oi i

e

Muluplylng both parts of the ith equation of (2.7) by u
(u is the complex conjugate of u;) and summing over i,
we find

piimuu*uzzduu

i=1l j=1 i=]l j=1

(2.8)

Using (2.4), the equation (2.8) can be written as
M@u,udu?+D@E,upu +k@,u® =0. (2.9

Using the fact that, if M(u,u*) is a positive definite
quadratic form and u # O is an arbitrary complex vector,
then

M(u,u®) > 0.

Thus, any root u of the frequency equation satisfies the
quadratic equation (2.9) with positive coefficients. From
this it immediately follows that Re u < 0, where Re
denotes real part, Thus:
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_D@,u)d “ 0

2Rep =p +p”
M@u,u?

Result 2.3

For the system described by equation (1.3) satisfying
1. The matrices M, D, and K are asymmetric
2. The force vector F # 0
3. The force vector F is a function of the resonance

frequency, satisfies F = Fe® # ) whereF
denotes the peak value
Then the roots of the frequency equation have a

magnitude of K@) - F and a real part of
M(@u,u?
D(@u,u®
2M@u,u®
Proof

Note that the equation (1.3) in this case has the form
Mx + Dx + Kx = F

which represents a non conservative system operating
under a forced oscillations. The eigenvectors u are
determined from the equation

(Mp? + Dy +K)u =F (2.10)
which has n-pair of roots, and can be generalized using
the same argument derived in section 2.2. Thus:

M@u,u3yu?+D@u,uu +K@,u™=F. 2.11)

Using the fact that M(u, u*) # O is a definite quadratic
form and u # O is an arbitrary complex vector; thus, the
roots u of equation (2.10) satisfy the quadratic equation
(2.11). It is immediately seen:

M(u,u %Re(u?) +D(u,u HRe(u)

+K@,u) =F 2.12)

M(u,u)Im(p?) +D(,u)m@E) = 0
where Im denotes imaginary part.

Since equations (2.12) are simultaneously satisfied, it is
clear that:

D 149



ELKOBROSY and BARSOUM: On Vector-Matrix Differential Equation Of Vibrating Systems

D@u,u®
2M(u,u®

Ku,u" - F
fom [ SREL =T
M(@u,u’

Result 2.4 The solution of state equation

Re(pu) = -

The system described by equation (1.3) can be easily
derived in state space form (though, in case that, M-
matrix is nonsingular, det (M) # 0) as follows:

Let y = (x, X), hence y = (X, X).
Substituting into (1.3), it can be seen:

y=Ay+M!'F (2.13)
The general form of A-matrix, containing constant

coefficients, including the parameters of mass M,
stiffness K, damping D in matrix form, can be written as:

>
"

-M-'k -M-'D

where M, K and D are defined in (1.4).

The solution of (2.13) can be derived, following
[4,5,6], by calculating the transition matrix eMl as
follows:

t
y = eAly, + M7! 1 eAt-NE()dr (2.14)

Result 2.5 The Cayley-Hamilton theorem

The Cayley-Hamilton method for determining the
transition matrix e”!, can be summarized as follows:

1. Obtain the eigenvalues of A-matrix, from det (I\ - A)
= 0. If A is n x n therefore we have n-roots (\;, i =
1, 2, ... , n). These roots may be distinct real
(positive or negative) roots, pair of complex
conjugate, or repeated real roots.
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2. In the first two cases of eigenvalues, the transition
matrix is
n-1
eAt = Y oAl
i=0

{2.15)

where the coefficients «; are the simultaneous solution
of the following algebraic equations, represented in a
general matrix form,

o n-1 .
e = Y o\, (2.16)
i=0
j=1,2,...,n and q; are exponential functions in
iune.

3. In case of repeated real eigenvalues the transition
matrix takes the same form of (2.15), while the
coefficients «; take the derivative form of (2.16) with
respect to A;. namely,

T i-1
5 . i-
te a— E la|)\J .

i=1

(2.17)

Finally, substituting for eAl from (2.15) into (2.14), to
obtain the solution of the state space form (2.13).

3. FORMULATION OF STATE EQUATION

In a discrete non-conservative vibrating mechanical
system, the equation of motion often takes the form (1.3)
and this would be converted to the state space form as
equation (2.13). To appreciate the solution technique,
consider the mass/ spring system of n-degrees of freedom
of Fig(l), it can be appreciated that the parameter
matrices have the following forms:

1) M-matrix takes the diagonal form, where

my

my

2) D and K matrices involve a coupling, mutual effects,
but in a symmetric form, such that:
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oy +dy; +dy,
-dy,

_du

. dyd vy~
-4 du1utd

@-n an
includes mass damping coefficients in the diagonal
tlements, and spring damping in the co-symmetric
tlements.

In this case A-matrix of the formula (2.13) takes the form:

-

A - | _Kortkiutki kiy
my my

ki, kjp+ky+ko3 ka3

L — Wa2 M2

l((n—l)n _k(n—l)n

m m

nn

The force vector F of (1.5) (applied on each mass) takes
any specified value, such that:

I.F,=0 foralli=1,...,n
represents free oscillation,

2. F; = constant for some i
represents the system under a step-force,

3. F, = f"i sinw;t (or cosw;t) for some i represents
forced oscillation,

4. F; = fi(x, t) = any function of x, t for any i,
represents the system under a feedback control,

5. F; = {0; constant; f(t); ¢(x); ¥(x, t); ... etc.} for
each i, a discrete type of force function; which
represents a heuristic control system associated with
the analysis of random functions applications.

In the analysis of this paper, the solution takes the form
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+k

nn

ko kg vk -k
K = -k, kiptkytkyy -ky

Ko Kpointka

includes mass friction coefficients in the diagonal
elements, and spring stiffness in the co-symmetric
elements.

: it
1
1
_dg+dyy+dpy _dl_2
my my
dpp djy+dyy+dyy dy3
My mys my
d(n-l)n N d(n-l)n"dnn
mnn mnn J

(2.14) and is computed by Cayley-Hamilton theory,
considering that all the coefficients are positive definite
and all possible values or functions of forces F; could be
involved, and i is n-degree of freedom as shown in
Fig(1l). The similarity transformation is not required and
the computer will give the solution at each step of
integration providing a time-specification such a bit small
value of step length.

The state variables y, of (2.14) give the solution
response at each step of time, such that y, = ®,(t) is a
function of time for each i = 1, ... , n. The vector y
represents the velocities X and the displacement of (1.5)
for each mass m; (my = ORI IE==1M.. , n)
contained in the vibrating mechanical system. All
displacements are measured from the equilibrium
positions as shown in Fig(l). Therefore:

xl =Yi’ il =yn¢i) i= 1, -..,n.
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K
kot Kqg ki, kpy  Kpg (m-1n  ®nn
/1/ 11 Wag - =i Mnn

r= = =

n_ T n_ | I i
' | = T L

do; dyy di2 dz2 SdES d(n-1)n dpp

Figure 1. Mass/spring system

4. SIMULATION RESULTS

A software package of a computer program is developed
by the authors. This is available for applying any type of
force in a random formula. it also accepts all possible
values of the parameters, and is analyzed for the
mass/spring mechanical vibrating system.  Another
software based on the solution of the state space equation,
accepting various components of parameters, state and
input variables, is also developed; both are available for
running on IBM-DOS PC computer.

In both packages, evaluation of the eigenvalues of the
A-matrix and evaluation of the transition matrix by
Cayley method are involved. Step length is to be
specified and the final solution of velocities and
displacements are associated with a graph program, to
show their response characteristics in the time domain.

Example 4.1 Consider the system of Fig(1) to have only
two masses of the following parameters (in per unit
value):

my =2,my =6,ko; =3,k = 1,kjp =12,k =
0, dO] = 4, d” - 6, dlz = 0, d22 = 0.
Show the step response of free oscillation assuming that

the masses are respectively, in a 3 and 4 unit distance
from their equilibrium position.

Solution

3 D 4+6
T 4T T o
Y1 ]
Y2 1
Therefore: | |=
y3 -8 6 -5
_yﬁ 2 -2
3
B ac |4
The solutionis y = e 0
0
A =1
A
INI - A| =
8 -6 A+5
=202
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3+1+12 -12
= F
-12 12

0
_0
Y1
Y2
Y3

LY4

“4.1)
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the eigenvalue: \; = -1, My = -2, M3 4 = -1 £ i

Cayley-Hanulton method

(2.16) gives

et =oag-atay-og

e-zt =a0—2a1+4a2-8a3

e+ = o - (1+i)a; + 2iay + 2(1-i)oy
et = o - (1-)ay - 2y + 2(1+i)a
the last two equations can be replaced by
etcost = ap- a; + 203

elsint = ) - 20y + 203

Solving the four equations, we get:

ag = €'(4 - 2cost) - et

a; = €'(6 - 4cost - sint) - 2e

Qay = e'(4 - 2.5cost - 1.5sint) - 1.5¢ %
az = e'(1 - 0.5cost - 0.5sint) - 0.5
The transition matrix from (2.15) is:
eAl = qpl + A + @A + azA’

—

where: A= )

-8 6 -5
2 -2
-8 6 -5
A2 _ 2 _2
40 -30 17 6 [
2 =2
40 -30 17 6
A3 2 -2
-124 90 -45 -30
-20 16 -10

Substituting for A’s and a-coefficients, hence:
- "
S11 512 §13 Sy4
S S S.

At [521 S 8y iy
$31 S32 S33 S34

S41 S42 S43 S44

- -

where:

s;; = €'( 12 - 2cost - 8sint) - 92

S12
513
S14
$21

522
23
S24
831
832
$33
S34
541
S42
843
S44

e'(-6 + 6sint) + 6e %

e'(3 - 2sint) - 3e2

e'( 6 - 3cost - 3sint) - 3eH
e’( 8 - 5cost - 3sint) - 32
e'(-4 + 3cost + 3sint) + 22
e'(2 -cost -sint) -e2
e'(4 - 3cost) - e

e'(-12 - 6cost + 10sint) + 18e2
e'(6 + 6cost - 6sint) - 122
e'(-3 - 2cost + 2sint) + 62
e'(-6 + 6sint) + 62

e'(-8 + 2cost + 8sint) + 62
e'(4 - 6sint) - 42

e'(-2 + 2sint) + 22

= e'(-4 + 3cost + 3sint) + 22

Substituting into (4.1), we get:

Y1
Y2
Y3
Y4

x; = 3s;; + 4s;, = e*(12 - 6cost) - 3¢
X, = Y8 - 3cost + 3sint) - et
e(-12 + 6cost + 6sint) + Ge
dx,/dt = e(-8 + 6cost) + 2e2

This solution is traced in Fig(2).

5.0 -
$
Yent
LR
2.0

1,004

0.0
=10
-2.0 ;

-3.0 -
0.0

.
N
"""""""""

2.0 4.0 6.0

Figure 2. 2-stage free oscillation

Example 4.2.

Fig(3) represents the results of a single

stage mass/spring system of the following parameters:
ml 1 =5, k01 = 10, xl =0.5, kll =d01 =dl| =0, Fl =sint.

0 1
The A-matrix is |: 5 0} and the eigenvalues are

+iy2 .

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993 D 153



ELKOBROSY and BARSOUM: On Vector-Matrix Differential Equation Of Vibrating Systems

vel & di

-Xy

o
(&)
74,LL
i
— R
-

|

o

L)
s baaa b aaaaa i
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|
o
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Figure 3. Single-stage pure oscillation

Example 4.3. Fig(4) represents the results of a 3-stage
forced oscillation from equilibrium, each force is a cos
function of a frequency equal the eigenvalue (frequency
of oscillation), where F;, = cos(1.8019t), F, =
co0s(0.445t), F3 = cos(1.247t). The parameters are m
=m22=m33=km =k]2=k23= l,allother
parameters are zero. The eigenvalues are +il.8019,
+i0.445, +i1.247 and A-matrix is

- L
1
1
21
1 -2 1
- kil ]

0.0 20 4.0 6.0

time

Figure 4. 3-stage forced oscillation at
resonance
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Example 4.4. Fig(5) represents the results of a 2-stage
feedback control oscillation, where the forces applied to
the masses are sin waves and functions of displacement,

where F| = sin3t, F, = (let)z. The parameters are: m),
=35,my =8,d;; =2,dy, =4,dy; = 07,4}, =7,
kop =3,k;; =02,kjp =12, k) =0, x; =x,=0
(from equilibrium). The eigenvalues are: -1.393 t
1.531i, -0.264 + 0.393i and the A-matrix is

1
-1.94 1.4
-1.375

-3.04 24

1.5 -1.5 0.875

a b a2 a4 2 a2 a2 5 o

cue
cocees
P
<
saa,
s,
L LT R

=]
°
»
=3
»
o
5o
o
=}
°
—
°
o

Figure §5. 2-stage random oscillation control from
equilibrium

Example 4.5. Consider a heavily damped random control
system of 3-stages, the time response of each variable is
decaying, as Fig(6) illustrates. The applied forces are F,

.
-3t
=0,F, =e *, F3 = cost. The parameters are m;; =

6, My, = 3, m33 A 8, dll - 1, dl2 = 0.1, dn = 2, k33
= 0.5, kg; = 2, k|5 = 3, ky3 = 2. The other parameters
are zero. The displacements are x; = 0, x, = 8, x3 = 3.

The eigenvalues are -0.352 + 1.354i, -0.197 + 0.752i, -
0.017 + 0.342i, and the A-matrix is:
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-~

i 1

1

-.83 S -.18 .017
1 -1.67 .67 .03 -7 .67
i 25 -.31 25 -.25]
) J‘\
&60 1\ x
% ] 1 2
3

2.60 1

AAAAAL A 2 4 4 44 A
O

6.0

0.0 4.0 8.0

lime

Figure 6. 3-stage random control system

5. CONCLUSION

The solution of a vector-matrix differential equation,

representing the equation of motion of n-degrees of
freedom non-conservative mechanical system, has been
considered. General results for the associated eigenvalue
problem have been established in section 2. The equation
has been represented in state space form and a solution,
based on the Cayley-Hamilton theorem, has been
presented which has the following features

1.

. There

The computations to be carried out are moderate. The
software package, DYN.EXE, requires only 30
kilobytes of the memory space.

There is no need to similarity transformation.

is no need to compute the associated
eigenvectors. Simulation results show that the
computation time in CPU seconds is too small
compared with the classical matrix method.

The method can be extended to systems with random
inputs. This will be considered elsewhere.
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<

6.

(1]

(2]

(3]
(4]
(3]
(6]
(7]

(8]

The method can be used for the simulation of
vibrating systems for the purpose of identification and
control. This will be discussed in a separate paper.
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