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ABSTRACT

A new method, for the solution of the inverse eigenvalue problem, is presented. The proposed technique is
designed to generate matrices with prespecified eigenvalues. This method is based on the well-known
properties of orthogonal polynomials together with the Gaussian quadrature integration.
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1.INTRODUCTION

Inverse eigenvalue problems arise often in Applied
Mathematics, Applied Physics and Control Theory. They
are treated extensively by many authors, e.g. cf. [3-7,10-
13]. In this paper, we propose a fundamentally different
approach based on sampling orthogonal functions over
their interval of orthogonality. It can be completely
automated to generate a wide range of matrices with
selectable eigenvalue spectrum.

Consider the eigenvalue decomposition of an n-by-n real
matrix A given in [14] by

A=UAUT (1)
where Ais an n-by-n diagonal matrix of real eigenvalues
and U is an n-by-n matrix of normalized eigenvectors of
the matrix A. The matrix U is orthogonal since UT U =
I where the superscript "T" denotes "transposition" and
I denotes the identity matrix.

Equation (1) shows that if the orthogonal matrix U can be
generated, then the matrix A with prescribed eigenvalues A
is simple to create. It should be noticed that the equation

n
A=Y )\,.u,-u,-T, 2
i=1

where y; is the i-th column vector of U, allows the matrix
A to be created without having to devote extra storage to
the orthogonal matrix U.
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2. CREATION OF ACCURATE ORTHOGONAL
MATRICES

Consider the Gaussian quadrature integration [1,8]

1 p-1

jf(X)dx E w; f(x)), (3)
3 i=0

where w; and x; are the weights and abscissa locations for
the p-point Gaussian integration, respectively. This
integration formula for p points is theoretically exact for
all polynomials of degree 2p+1 or less [4]. Using the
orthogonal properties of some special functions, we can
find £ (x) and f (x) such that

1
Ifn(x)fm(x)dx =1
-1

ki 4)
=0 m#n.

This integration could be computed, close to machine
accuracy, using Gaussian quadrature by

p-1
E‘Vi

2 fo(x) f,(x;)=1, m=n; )

=0, m#n.

Consequently, the orthogonal matrix U can be simply
created in the form:
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Weh®) W) Vafx)
N AR A¢ ) Yt ()

U= (6)

N‘: £ YW fi (G ) e YW fL(R, D

Taking the dot product of any two column vectors of U
is equivalent to numerically integrating Equation (4) using
the Gaussian quadrature form (5).

The high accuracy of the p-point Gaussian quadrature
with polynomials of degree < 2 p+1 implies that U is
orthogonal to a high degree of accuracy.

2.1 U-Creation Using Legendre Polynomials:

Legendre polynomials L (x) are well-defined in [1] by
the generating function

(1-2hx + b?y12 = f: h "L, (x) ©)
n=0
from which
L, x) =1
L,x)=x
L, (x) = % (3 x*1)

.................... (8)
with the orthogonality property
1
J L, x)L_,(x)dx =0, n #m;
21 9)
2
= ’ n=m.
2n+1
Then, taking
f (x) = 2"2*1 L, (x), (10)
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we can set
f, (x) = y1/2
f, x) = V3/2 x,
f, ® = {5/8 (3x%-1),
f; ) = y7/8 (5x°-3x),
........................ (1
and

1

p-1
j f:(x)dx =Y w ff(xi)=l,
=1

i=0

| p-1
j f, ) f x)dx = Y w; f(x)f (x;)=0.(12)
21 i=0

Considering a 4-by-4 matrix example, the abscissae and
weight values for a 4-point Gaussian integration are given
in [1] by

Xg = - X, = 0.3399810436,

X; = -x3 = 0.8611363116,
and

Wy = W, = 0.6521451549,

w; = w3 = 0.347854845]1.

The resulting U -matrix, defined in (6) and computed
with double precision arithmetic, will be

0.571027649 0.336257876 -0.417046068 -0.622037488

0.417046067 0.622037489 0.571027647  0.336257874
i 0.571027649 -0.336257876 -0.417046068 0.622037488

0.417046067 -0.622037489 0.571027647 -0.336257874

It can be verified that this matrix is orthogonal to within
an error of 6x10°. A matrix with the selected eigenvalues
Al Ay, Ag, and A4 is then computed by forming the
product
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.~ -

A, 0 00
0% 0 0f
A=U U 13

0 0 )\ 0 ()

0 0 0 X

The right eigenvectors are simply the column vectors of
the matrix U. A complete spectrum of U-matrices can be
automatically generated by varying the integration order
corresponding to the matrix size and the number of
prespecified eigenvalues.

2.2 U -Creation Using Tchebyshev Polynonuals

The Chebyshev polynomial of degree n in x is defined
in [2] by

T, (x) = cos (n cos’! x) (14)
from which
To (x) = 1,
T, x) =x,

T, (x) = 2x2-1,
T3(x)=4x3-3x,
........................ (15)

with the orthogonality property

=0, m#n;
1
T . x)T,_ (x
[__"() “‘()dx=% m =0#0;  (16)
1oy1-x2
=7, m =n=0.
Then taking
£ 2
a(X)= Ty(x),n #0
r‘l—x2
we can set

1
fo (X) = — ¢(X),
V2
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fi x) = x¢(x),
fx) =2x*-1) ¢ (x),
f; (x) = 4 -3 X) ¢ (x).

..................... (17

with
p(x)lImlE (18)
xy1-x?
and
| 4 p-1 L
Jf;(x)dx = Y w fixp=1,
A i=0
| p-1
lfn(x)fm(x)dx = Y w; f,(xpfp(x,)=0.(19)
2 i=0

Considering a 4-by-4 matrix example with the same
abscissae given in Section 2.1. The weights in this case
are w, = w, = 0.570125788, w; = w3 = 0.490391524.
The resulting U- matrix, defined in (6) and computed
with double precision arithmetic, will be

0.540355373 0.460439775 -0.477627776 -0.535979687
0.456087739 0.534991526 0.521413182 0.461222045
? 0.540355373 -0.460439775 -0.477627776 0.535979687
0.456087739 -0.534991526 0521413182 0.461222045

It can also be verified that this matrix is orthogonal to
within an error of order 10,

3. CONCLUSION

A simple method to generate matrices with prespecified
eigenvalues has been presented. The method is based on
the orthogonal properties of orthogonal polynomials and
Gaussian quadrature integration. Legendre and Chebyshev
polynomials are used as illustrative examples for the
proposed technique.
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