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ABSTRACT

In many application both axial and lateral forces exist in structural members, for example. harbor, costal,
offshore construction and rail roads. Solution using exact stiffness matrix is already available. However,
spacial variation of soil properties makes this approach out of question, or with limited applicability at most.
In this paper a method is introduced to find the response, buckling load, and the stiffness constants of a beam
column, the variation of soil properties along the members and the effect of the axial force. A comparison of
the results obtained using the new proposed method and those introduced through other known methods is

presented.

1. INTRODUCTION

The general equilibrium equation of a solid body is

[K1{U} = {R} (1)
where,
K] the stiffness matrix
{U} and {R} the nodal displacement and force vectors,
respectively

The energy stored in any elastic deformable body is

E=05{U}T[K]{U} @)

For a beam column subjected to axial loading and
embedded in soil, the energy stored in the system consists
of three parts; flexural energy in the beam, potential
energy due to the axial force and the strain energy in the
soil mass.

2. OVERALL STIFFNESS MATRIX

As was mentioned before, the total energy stored in the
system is the sum of three separate components. From (2)
it seems natural to consider the overall stiffness matrix as
the sum of three separate matrices that contribute to the
flexural deformation, axial force potential and strain
energy stored in the soil mass, respectively. In case of
non linear soil, we use the tangential stiffness matrices
- and iterative procedures.
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2.1 Flexural Energy

For a beam element, we assume the displacement to be
given by

Y = {H) (U} (3)
where,
{U} the nodal displacement

{H} the shape function associated with flexural
deformation, given by

3522 (5Y
13(t) 2(L)
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4 x(1 t)
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L the length of the element,and
X  a running coordinate along the element.

The degrees of freedom U,,...,U, are shown in figure (1)
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I)‘

Figure 1. Positive sign convention.

The flexural stiffness matrix for a beam element can be
obtained using a direct finite element formulation or using
energy approach. In the later case, we have

L
EI [ d%
E;=— i Fdx ®)

where,

-

E, the flexural energy stored in the beam element, and
EI the flexural rigidity of the beam

In both cases, we get [K] the beam stiffness matrix, for
flexural deformation

12 6L -12 6L

[K,]- EI 4L? -6L 2L? ©
L3 12 -6L
SYMMETRIC 4L2

2.2. Potential Energy Due to Axial Force
The potential energy due to axial force N is given by

L L
_ d
E, - -O.S{N(%)’ dx -o.s{Nafdx ™

The first integral on the right hand side of (7) represents
the potential due to flexural deformation, and the second
integral represents the potential due to axial deformation.

In case of allowing the axial force to vary linearly along
the member, then we have shape functions of the form

_Xy_0.5[1-(1-2%y2
[a X)-0511-0- 2y

1-(1-22y : @)

{H,} = { 3

Xy_0.5[1-(1-2%y2
| ()-0501-(1-T)]

K
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The axial translation is given by (3) after replacing {H|
and {U} by the appropriate shape functions and nodl
displacements.

Allowing the normal force to vary linearly with th
element, give a better approximation and hence enable
one to use less elements.

Using (4),(8), after differentiation, and (3) with (7), an
casting the result in a form similar to (2), we get

E = —O.S{U}T[KGI]{U} - {U}T[KQ]{U} O
where,

E, the potential energy associated with the normal forc:
due to flexural and axial deformation, and

(] 1 S 1
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2L ul 1L
. 15 10 30 "
Gl 1 E L :—1
5 10
SYMMETRIC % L
and
_3. l L '_3 0
5 10 5
ol L
o ol
[kg] T 3 : 11
s
SYMMETRIC 716 L?
where,

N, and N, the axial force at the first and second nodes
of the element, respectively.

The matrices K, and K, are called geometrical stiffness
matrices

The stiffness matrix K, associated with axial
deformation is given by
7 -8 1
AE
K,] = — 16 -8 12
[K,] 3L (12

SYMMETRIC 7
2.3. Energy stored in the Soil Mass
To find the stiffness matrix due to soil reaction, we

process as follows. If the beam is deformed to take the
first mode shape, see equation (4), given by
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= - £2+2£3
¥y =1 3(L) (L)

and the soil reaction F(x) is assumed to be given by

F(x) = f(x,y) (13)
where f(x,y) is the force per unit length of the beam, at

.~ distance x, for deflection y at the same distance x.

The nodal forces {F} associated with loading F(x) are

- given by [4]

L

(F) = [{H} F(x)dx (14)
0

where

(F} a vector of th 41 order,

{Hi} shpe function to be given by equation (4), and

. F(x) the force per unit length of the beam, at distance

X.

For a linear system, if the deflected shape y is given by
y = h, where h, is the first mode shape, then the soil
reaction F(x) is given by F(x) = k h;, where k is a
constant represening the subgrade reaction. Finally we get

L
(F) = k [{H}) by(x)dx (15)
0

In (13), (14) and (15), we assume a Winkler type
foundation. However the method can be extended to
cover the cases of continuum, assuming the existence of
a Green function of the form

L

G(x) = [fly.xE) dE (16)

0
where, y the deflection at point §.

The function G(x) is to replace F(x) in (14).

From the above and the definition of the stiffness
constants, it may be concluded that if a beam element is
deformed to take the shape given by h; and at the same
time subjected to a lateral load defined by k h; then the
nodal reaction (stiffness constants ) for this case of
loading and deformation are given by

K ;+F i=1.234
Working as before for loading given by k h; (i = 2,3,4)
and deformation given by h;, i=2,3,4, respectively, we
conclude that the stiffness matrix for the soil reaction is
given by

L
[K,] = kf{H,}(H,}de (17)
0
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for the case of linear soil, and by
L
[Ks] = [ {H) (Fi(®),..0 Fy®) ) dx
0
for the case of non-linear soil.

where, F;(x) is the soil reaction due to deflection given
by h;, and is understood to be given by (13) or (16)
according to the soil conditions.

The above applies equally for the case of soil stiffness
constants due to displacements in the direction of the axis
of the member, assuming that the appropriate shape
functions and load vector are used in (17) and (18).

In case of linear soil of Winkler type, where the
horizontal soil parameter k; varies linearly with depth,
the soil stiffness matrices [Kgy;] and [Kgy,], are given
by

(18)

[
1_31_, _l_l_Ll iL lded 131}
35 210 70 420
s 13,2 s
105 420 140
(Kgyl = K, 13 -1 (19)
21 e £
35 210
SYMMETRIC LY
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and
11_1 ix_! i[_i _'11_’
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1 4 1 3 =l 4
sl LEVINE"]
B 280 60 280
Kyl H8 : > | @
212 o8
7 28
SYMMETRIC A
168

where ky, and ky, the soil parameters at the first and
second nodal points of the element, respectively.

The soil stiffness matrix for the vertical direction , axial
in case of piles and vertical members, is given by,
assuming the axial force to vary linearly along the
member,

2 L il
15 15 30
8 1
[Kgy] = ky, L 15 15 @n
SYMMETRIC 1—25
and
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1 0 |

60 60

s 1,
[Kgva ) = (kyy -y L | 15 15 (22)

|

| SYMMETRIC -~

[ 60

where ky, and ky, are the soil parameters in the vertical
direction at the first and second nodal points of the
element

The method can be extended to cover the case where
the vanation of the soil parameters, along the member, is
given in the form of a polynomial of any order, any
analytical function, or tables.

The sum of [Kgy,| and [Kgy;] gives the total soil
stiffness matrix [Kgy| for vertical loading, loading in
direction of the axis of the member.

[Ksvl = [Kgyil + [Kgyl (23)
3 THE EQUATION OF MOTION
From equation (1) and parts 2.1 through 2.3, we find

that the equation of motion for any element takes the
form

i Up Ry
cme W meo|fEach E Yo (24)
0 | K, Uy Ry
where
{Ug} = {U,,.... Uy} is the displacement vector located

in a plan perpendicular to the element.

{UN} = {Us,.... Uy} is the displacement vector in the
direction of the member axis.

{Rp} the force vector associated with {Ug}

{Ry} the force vector associated with {Uy}

[Kg] the stiffness matrix relating {Ug} and {Rg}, and is

given by
(Kgl = [Kd + [Kg] + [Ksy] (25)
[KN] the stiffness matrix relating {Uy} and {Ry}, and
is given by

[(Kn] = [Kq] + [Ksyl (26)

We first assemble the global stiffness matrix for the
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|
complete structure (beam or pile), then solve for the
displacements parallel to the structure's axes. {Uy|

Using the relation N = EA g-xz we find the normd

force at the different nodal points, then we solve for the
displacement vector {Ug}

4. THEORY VERFICATION

In what follows, we introduce the results of analysis
obtained using the present method versus those obtained
using analytical methods The results include differen
cases of loading, supporting conditions, and cases with
and without surrounding soil. \

4.1. Axial Load

For a simple beam loaded uniformly , and subjected to
axial force P. the maximum deflection §_,, and the |
maximum moment M_ .. are given respectively by [I]

HIEL L
™% 384EI

. aL?
Mﬂll 8

(v)

A(u)

where

q the load intensity

L beam'’s length

El flexural rigidity,and

n(u) the deflection’s amplification factor to be given by

12@2secu -2 -u?)

n(u) =
S5ut

A(u) the moment’s amplification factor to be given by

Lo 2(1 -cosu)

u2cosu
and
R

us=— —

2 \H

Table 1 shows the amplification factors for the two
cases mentioned above. The factors are calculated once
using Timoshenko’s method given above, and once using
the proposed method. The table shows a very good
agreement between the two methods.
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for simple beam uniformly loaded.

Table 1. Deflection and Moment amplification factors due to axial load

2u Deflection Moment
Timoshenko Present method Timoshenko Present
method
0.0 1.000 1.000 1.000 1.000
0.2 1.004 1.005 1.004 1.011
0.4 1.016 1.017 1.016 1.024
0.6 1.037 1.039 1.038 1.046
0.8 1.070 1.070 1.073 1.079
1.0 1.114 1.114 1.31% 1.124
1.2 1.173 1.172 1.176 1.184
1.4 1.250 1.25 I1.255 1.264
1.6 1.354 1.352 1.361 1.370
1.8 1.49%4 1.492 1.504 1.514
2.0 1.690 1.685 1.704 1.715
2.2 1.962 1.968 1.989 2.007
2.4 2.400 2.410 2.441 2.464
2.6 3.181 3.187 3.240 3.269
2.8 4.822 4.888 4.938 5.030
2.9 6.790 6.807 6.940 7.018
3.0 11.490 11.455 11.670 11.833
T ® 2021.14 || o 2093.79

4.2. Buckling Load

To check the validity of the proposed method to
determine the buckling load of a beam column with
different supporting conditions, we apply a small lateral
load at any appropriate location and find the resulting
lateral deformation associated with different levels of
axial loading. The buckling load may be defined as the
wial load that keep lateral deflection after removal of the
lsteral force that produced it, or, according to
Timoshenko [1], the minimum axial load that causes the
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amplification factor to be reversed.

Figure (2) shows the relation between the axial load and
the resulting lateral deflection for a cantilever. In this
case a constant lateral load equal 1 ton is applied at the
free end of the cantilever, and the axial load is applied at
increments, each equal 0.1 of the buckling load. The
buckling load calculated using the proposed method is
found to be exactly the same as that calculated using the
exact formula.
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Percentage of buckling load
< < o
o

0.6 4 gw = 10 m.
= 64427 ¢
0.4 4 Loterol lood e 100 ton
Buckling lood = 1580.0 ton
0.2 4
0.0 T
0 20 40 80

Displocement in cms

Figure 2. Effect of axial load on the displacement of
the free end of a cantilever.

Figure (3) shows the relation between the axial load and
the resulting lateral deflection for a hinged beam. In this
case a constant lateral load equal 1 ton is applied at the
mid span of the beam, and the axial load is applied in a
manner similar to the one above. The buckling load
calculated using the proposed method is found to be
exactly the same as that calculated using the exact
formula.

1.2
§ 10~ === s === == -- o of
g
§ 0.8
0.6 4
- th 10 .
5 g - 64427 tm!
0.4 Loterol lood = 1.00 ton
§ Buciding lood = 6350.0 ton
-
§ 0.2 4
3
e 00 . T
0 1 2 s 4
Displocement in cms

Figure 3. Effect of axial load on the displacement at
mid span of hinged beam.

Percentage of buckling load
< o 9
> @
A A

Length = 10 m,
[3] = 84427 Lm'
0.4 4 Loterol lood = 1.00  ton
Buckding lood = . ton
0.2 4
0.0 v T .
0.0 0.8 1.0 1.8 20

Displocement in cms

Figure 4. Effect of axial load on the deflection at mid
span of fixed end beam.
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Figure (4) shows the relation between the axial load and
the resulting lateral deflection for a fixed end beam. This
case is treated exactly as the one before. The buckling
load calculated using the proposed method is found to be
exactly the same as that calculated using the exact
formula.

4.3 Deflected Shape

The deflected shape of a beam, with length L, on elastic
foundation,with subgrade reaction k, with both of its ends
hinged, is given, for the case of concentrated moment M
acting at one of its ends, by [2]

g 2MB?
k (cosl? BL - cos’ BL)

®

* [cosh BL sin Bx sinh B(L-x)cos BL sinh Bx sin B(L - x)]

‘
B l_k_
4EI

Figure (5) shows the deflected shape for the case of
long beam, where BL = 5.936 > S as calculated using
the exact method and the proposed method using 2,5, and
10 elements. Figure (6) shows the deflected shape for the
case of short beam, where BL = 0.469 < 0.6 as
calculated using the exact method and the proposed
method using 2,5,and 10 elements.

where

1.0
Proposed Method 10 elements
£ Q2205 Proposed Method 5 elements
€ 05 | i
Moment = 100 t.m

3 K =20 tm?, e
= B w3 " » e
o
2
g 0.0 —=

-0.5 oo T T T T

0 4 8 12 16 20

Distonce along beam in m.

Figure 5. Deflected shape of a hinged-hinged long beam
due to a moment at one of its ends.
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0.0002
Moment = 100 tm
; k - 20 tm
£ o002 B = 0235 m™
£
.§W|-
0
2
8 — Exoct Method
0.0001 e2209 Proposed Method 10 elements
ﬁ um?ropoood Method g-hmonh
0.0000 v T v T T T T T
0 4 8 12 16 20

Distonce along beom in m.

Figure 6. Deflected shape of hinged-hinged short beam

due to a moment at one of the ends.

Figures (5) and (6) show that the proposed method
predicts the deflected shape very accurately, even with a
small number of elements.

4.4. Effect of Variation in Subgrade Reaction on the
Deflected Shape, Bending Moment and Soil
Reaction

Figures (7) and (8) show the variation in the
deflection, for the cases considered above, due to variation
in the distribution of the subgrade reaction. Three cases
wre considered;
case a:- the subgrade reaction is constant along the
length of the beam, with value equal 20 t. m2

case b:- the subgrade reaction varies linearly from O at
the right end of the beam point of application
of the load, to 40 t.m2 at the left end of the
beam.

case c:- the same as case b, with the values of the

subgrade reaction change places.

1.0

—_— k= 20 tm?

cresk = 0 tmd ot rhs , k = 40 tm™ ot Lhs
£ QEoEP k = 40 tm™? ot rhs . k = O tm™ ot Lhs
g 054
% 00
g

Moment = 100 tm
'0.5 v Ll v T v Ll - L)
0 4 8 12 16 20

Distonce along beom in m.

figure 7. Variation in displacement due to variation in
ubgrade reaction, hinged-hinged beam with moment at
oe of its ends.
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Figure 8. Variation in displacement due to variation in
subgrade reaction, free-free beam with force at one of its

ends.

Figures (9) and (10) show the variation in soil reaction,
while figures (11) and (12) show the variation in bending
moment along the beam. Table 2 illustrates the symbols
used in the figures (9) through (12)

Table 2. Lateral subgrade reaction and factor B
used to produce Figures (9) through (12)

Lateral subgrade
Case reaction k LB m'!
t/m?
at L.LH.S | at R.H.S |at L.LH.S|at R.H.S
A 20 20 5.936 5.936
B 20 20 0.469 0.469
& 40 0 7.059 0
D 0 40 0 7.059
9.0
o= e Moment = 100 t.m A
E’ 7.0 9 wasss C / \
- P Vi \
/ \
§ 3.0 7 ‘\
.— | /4 \
3 1.0 1 7 \
-1.0- T v T -. -T - T v
0 4 8 12 16 2
Distance olong beam in m.
Figure 9. Distribution of soil reaction, hinged-hinged

beam with moment acting at one of its ends.
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1
[ EEI
o0Om>»

Force = 100 tm

T
4

= e

T Y T v T
8 12 16 20
Distonce along beam in m

Figure 10. Distribution of soil reaction free-free beam
with load acting at one of its ends.

Bending moment t.m

-20 -

-40 4

-60

Moment = 100 t.m

4.5. Effect of Variation of Tangetial Subgrade Reaction
on axial Deformation, Soil Reaction, and Axial

Force

Figures (13) through (15) show the distribution of the
axial deformation, shear soil reaction, and axial force.
Two distributions of the tangential soil subgrade reactions
are considered. A uniform distribution with constant
intensity 15 t/m?, and a linearly varying distribution,; that
varies from O at the ground level to 30 t/m? at the end
of the pile. The pile is subjected to axial force of

(
'i

magnitude 100 ton at the top , EA of the pile is 41233.4 |

ton, the over all length of the pile is 22 m. with 2 m.

prolonged out of the ground.

v

T

Distonce clong beom

in

m

T

186

= 2

Figure 11. Distribution of bending moment hinged-
hinged beam with moment acting at one of its ends.

tm

Bending moment

Distonce olong beom

m.

Figure 12. Distribution of bending moment free-free
beam with load acting at one of its ends.
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Axial deflection

Figure 13. Axial deformation.
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Figure 14. Tangential soil reaction. Figure 15. Axial force.
Table 3. Symbols used in Figure (16).
Lateral subgrade reaction t/m? Axial subgrade reaction t/m? free length
Case m.
head of the pile tip of the pile head of the pile tip of the pile
A 100 100 30 30 0
B 100 100 60 0 0
C 100 100 30 30 2
D 100 100 60 60 2
m SRESES S
Alexandria Engineering Journal, Vol. 32, No. 4, October 1993 C 245



SHARAKI: Effect of Axial Force on the Behavior of Beam Column

4.6. Effect of Varaition of Tangential Subgrade
Reaction on Lateral Displacement

Figure (16) shows the effect of the variation in the
tangential subgrade reaction on the head displacement of
a floating pile. The pile has the following properties EI
= 64427.7 t.m?, EA = 412334 t., the embedded length
of the pile = 20 m. The pile is subjected to constant
lateral load = 10 t. at its head. A varying axial load is
applied at the head of the pile. The free length of the pile
was considered once equal zero and once equal two.
Table (3) illustrates the symbols used in figure (16)

3 B
3
%
$
5 D
T4 = -
> c
3
)
é 4
0 +—r—r-r——
0.00 0.26 0.60 0.7 1.00

Loteral head displacement m.

Figure 16. Effect of variation of axial force on lateral
displacement.

5. CONCLUSION

A method is introduced to predict the response of beam
column taking into account the variation in both the
lateral and the tangential subgrade reactions. The method
considers uniform and linearly varying subgrade
reactions. However, it can be extended directly to cover
the case of variation of order higher than the first. The
method is capable of predicting the buckling load and the
response
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of piles with different end conditions. It presents very
accurate results even when using small number of
elements. The method introduced is checked versus some
of the known analytical methods. It seems to predict all
the required quantities very accurately. It has the

advantage

that; it can handle different boundary

conditions with the same ease. The analytical methods
lack this advantage. From the results obtained, it seems
that the presence of axial load has a profound effect on
the lateral response of piles. A fact that must be taken int
consideration when designing foundations subjected to
both axial and lateral loading.
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