CONVERGENCE ANALYSIS FOR A PARALLEL JACOBI ALGORITHM

M. El-Attar
Department of Engineering Mathematics, Faculty of Engineering,
Alexandria University, Alexandria, Egypt.

ABSTRACT

An iterative parallel scheme for the solution of banded systems of equations is introduced. It is based on the
implementation of the theory of matrix splitting. A convergence analysis for the proposed algorithm is
carefully introduced and the speed-up of the parallel implementation is studied.

INTRODUCTION

The solution of large systems of linear or linearized
equations is one of the central problems in engineering
applications and computational mathematics. Systems
which have a banded coefficient symmetric matrix,
usually resulting from finite element modelling, are of
great interest, however banded non-symmetric systems
are also common in the analysis of geomaterials modelled
with non-associative plasticity. The solution of these
systems in conventional computer architectures is
algorithmically simple problem, but suffers from
extensive time and memory limitations. Parallel and
distributed computation is currently an area of intense
research activity, the availability of powerful parallel
computers is generating interest in the development of
new distributed algorithms in order to solve problems that
were not addressed in the past due to cost and speed
constraints. Recent studies [1-5], have addressed the
generation of parallel schemes for the solution of large
systems of linear equations.

In this paper an iterative parallel block Jacobi type
algorithm for solving large banded linear systems is
introduced. The algorithm is a two stage iterative type
based on the theory of matrix multisplitting. A theoretical
convergence analysis for the proposed algorithm is
described. The present algorithm is tested for the solution
of a banded systems on a small transputer unit (A
transputer is a microprocessor with its own local memory
and with links that can connect one transputer to
another). The architecture used in this study is based on
a mesh connection of 16 transputers as shown in Figure
(1). Processors 1 and 16 are connected to IBM AT which
acts as a controller that downloads instructions and data
to the transputer unit. From a practical point of view this
connection represents a grid, a hypercube, a pipeline and

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993

a ring. The pipeline configuration is the one used to
implement the algorithm of this paper.

—1B004 Transp'uter Card in PC

[
Aj%._
=

1 ‘éj-iLr 1%

Figure 1: Transputer mesh architecture

G

RINENIY

The results for different linear systems with same
bandwidth are then carefully discussed.

DESCRIPTION OF THE ALGORITHM

Consider the linear system of equations
‘Ax=b (1)
where A is a banded matrix of size (n X n) and
bandwidth w, x and b are the unknown and known
vectors respectively. Based on the multisplitting of the
matrix, an iterative method is presented which is
structured so that operations can be performed in parallel.

D 137

EL-ATTAR: Convergence Analysis for a Parallel Jacobi Algorithm

Definition: Let A, By, C, and Dy be (n X n) matrices,
where k = 1,2,...,K. Then (B, G , Dy) is called a
multisplitting of A if

(i A = B, - G, k = 1,2,... K where each By is
invertible.

(i) Y Dy = I, where the matrices Dy are diagonal
k
and Dy 20.
Using (i) above, equation (1) may be written as

Bx=Cx+b ,k=12,..K)
or

x=B)ICx+®B)b,k=12..K. (3
Using the weighting matrices D, , these K sets of
equations can be combined as

Y Dyx=x-=

k

Y D(BYIC x + }; Dy(By)'b (4)
k

Equation (4) yields the following algorithm:

Choose x, arbitrarily, then for i = 0,1,2,

convergence

x*!'=Hx +Gb

where

H=-3 D,(By'C, and G =)Y D(B)"

The algorithm of equation (5) is implemented using a two
stage splitting, which is described as follows: The systen
(1) can be written in the submatrix form

A, A, 0 0 ... 0 o
Ao DAL TR g0t D, Sy

0l hagedigers it Qeaii
00(;0 Ax_x-lAnj

such that the diagonal submatrices A,, are of the same size (m X m) when k is odd and (g9 X q) when k is even, se¢

Figure (2).

\Bandwidth \

i |
A |
. n \Qz '
A21 |Az ;23
[e
I |
: Aax A33 3:.:
L |
L_\A<3 Asy Aasq
[N
| Ass Ass A !
Pt |
Lt _\:_1

Figure 2: Two stages multisplitting.

D 138

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993

(xl
X
Xy

¥

S 5

EL-ATTAR: Convergence Analysis for a Parallel Jacobi Algorithm

Then the set of multisplitting matrices are

'-A, -A, 0 . . : .. 0 0
Ay 17-Apy -Ay . . . e sl 0
C, - . S . . . : ! :
0 0 0 -+ =Aggay O ~Apgiq s 0 0
0 0 0 . -Ag ko V-Agk
- > " Y ; !
Yo . . .0 60. . .0 6:: for k is odd
o1”. . .0 09 o it I” for k is even
3 and K is even number.
Be=1o0 0 .ay,. .0/ o0.5, .0
i (By, Gy, D) is a multisplitting of A, since:
L Mrad el galt e un e wlii3 (@ A=B.-C ,k=12,...Kas long as each B,
0 0 I/ 00 g0 is invertible or equivalently each Ay, is invertible,
i R L 2

which is the case with matrices that result from
finite element problems.

where I’ and 1" are identity matrices of size (m X m) (b) E D =1

and (q@ X q) respectively, k

Then
/-A;, -A, 0 . ; ; . e o 0
<Ay Thenyy “AE™: :) . i o 0
BlC, -)) wilss g . j 3 .)
0 0 0 . -(AW'AL; 0 -(AY ALyl - 0 0
0 0 0 . - Ag k-1 1’-A“J
and

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993 D 139

EL-ATTAR: Convergence Analysis for a Parallel Jacobi Algorithm

0 - (Au)-l Ay 0
-ADTA, 0

H=Y Dy (B 'C=
k

-(Ap)A,

~(Ag) ' Ay B REMD " ALy, 0 0{

G =Y D (B!
k

™ - 0 & s wdB
0 A!t. . . 0

0 0 . (AY!'. 0

. (Agg)”!

- od

Now that the matrices H and G are defined, the
algorithm takes the following specific form:
Choose xg arbitrary, e.g. Xg = [0,0,........ 0)T.
Introduce subsequently the following iterative scheme
Fori = 0,1,2,.... until convergence:

*I=Hx +Gb (6)

For the subsystem k, this has the following form:

)l+l -~ '(Akk) Akkl ("k-l)
= (Akk) A+ () + (A ' b 0
or

Age ™! = by - Ay () - Ay ey

This method is essentially a tridiagonal Jacobi.

D 140

PARALLEL
ALGORITHM

IMPLEMENTATION OF THE

The above scheme can be implemented in a group of
(K/2) processors. Each subsystem is transferred through
the links between processors until each processor has two
subsystem, i.e. processor 1 has the subsystems 1 and 2
while processor K/2 has the subsystems K-1 and K. All
processors perform the first step of Gaussian elimination.
For example, processor k brings the matrices Ay | 5y |
and Ay 5 to upper triangular form and updates
accordingly the matrices Ay | 5y 2, Aoy | 2k » Ad okl
Ay ok+) and the vectors by, . by This is
computationally the most expensive operation but is
performed only once. Back substitution is performed
parallel in all processors with the odd numbered
subsystems. The even numbered subsystems receive the
solution from the odd numbered ones. Parallel, each
processor updates the right hand-side vector of the even
numbered subsystem then back substitution is performed
parallel in all processors for only the even numbered
subsystems. The solutions of the even numbered
subsystems are communicated to the odd numbered ones
and their right hand side vectors are updated. This is the
end of the first iteration, where each processor obtains
part of the solution vector. A convergence check after
each iteration, based on the criterion I X Tx+! | <
Tolerance, is carried out, where x' is the solution of the
th jteration and || . ||, is the infinity norm. If this is
true the process is terminated.

In this parallel implementation two serial stages are
combined in order to reduce the number of calculations
than a possible one stage algorithm.

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993

EL-ATTAR: Convergence Analysis for a Parallel Jacobi Algorithm

CONVERGENCE ANALYSIS

In the sequence x'*! = H x' + G b, H is called the
iteration matrix. The necessary and sufficient condition of
convergence is that all of the eigenvalues of H have a
magnitude smaller than 1, that is, if the spectral radius
p(H) is smaller than 1. This is the most general possible
convergence condition, but it is of limited use because the
eigenvalues of H are rarely known exactly. Thus, a more
refined tool is introduced based on suitable distance
function(norm) from the desired point of convergence.
Convergence is then guaranteed if each iteration reduces
the value of this norm.

Definition: Given a vector w > 0, we define the
@
weighted maximum norm | . | by

®
Ix | = max; | xj/w, |.

("]
The vector norm |. Jinduces a matrix norm, also

]
denoted by | . |, defined as

1Al = @)

where A is n X n matrix.
An alternative but equivalent definition of this norm is

]
based upon assuming | x | = 1, then

Al L 5 oyl

A | = max; — w ®
- l(a)ij.l .“]

where a;; are the entries of A.

Theorem (1): If A is an n X n nonegative matrix then, for
every £>0 there exists some w >0 such that

p(A)S|A .

Alexandria Engineering Jounal, Vol. 32, No. 4, October 1993

Proof: Let A\ be an eigenvalue of A such that

[N|=p(A). Let x#0 be an eigenvector of A
corresponding to the eigenvalue A\ normalized so that

"]
Ix] = 1. Then
s @ "] @
1Al 2]1Ax | = 1Ax|=|A]1=p(A)
From the above theorem we can state that, if A is a
square nonegative matrix such that p(A) < 1, then there
exists some w > Osuch that | A | < 1.

Definition: A square block matrix A with blocks A;
is(block) diagonally dominant if

T Ial< 1Al

iei

An equivalent definition is
i

|Aﬂ'lA“:'|.<)

Theorem (2): If A is a block diagonally dominant, then
the block Jacobi method (6) converges.

Proof: From the definition of the iteration matrix H

H; = -Ay' Ay
then

1= D IATAL<L v

(]
Also, H;; = 0, then we can write | H | < 1, and from

theorem (1) we conclude that p(H) < | and hence the
theorem is proved.

NUMERICAL RESULTS

The efficiency of a parallel algorithm is judged by its
ability of significant speed gains as more processors
participate in the solution of a problem. Table (1) gives
the solution time as a function of the number of
processors (p is the number of processors and N is the
number of equations in the system solved).

D 141

EL-ATTAR: Convergence Analysis for a Parallel Jacobi Algorithm

Table 1. Solution Time (Sec), bandwidth = 71.

TN | 486 | 972 | 1458 | 1944 |
2 | &z | - : :
126 | 937 - n
6 | 33 |425| 1086 -
g T [214 | 743 | 1382
10 T | 87 | 582 | 1047
p) T | 26 | 366 | 1.1
14 :] 201 | 634
16 - T 124 | sz
=)

Four different systems were considered but all with the
same bandwidth (w=71). It is interesting to note here
that, unless the number of iterations is very large(say
over 100), the solution times are not affected
significantly. This is because the forward elimination
(which is performed only once) is computationally much
more expensive than the back substitution(which is
performed in every iteration). In all cases presented in
Table (1), back substitution took only a fraction of a
second(less thaa 4 sec for the 10 to 15 iterations of the
most computationally intensive cases such as 1944
equations on 12 processors). The observation of Table (1)
may lead to a wrong conclusion that the speed-up and
efficiency of the method are higher than they actually are.
The parallel algorithm involves more calculations than the
direct one-processor method for the same size system. As
a result, some systems are solved faster with processor
than with two or sometimes four processors. In the
example of 972 equations, the solution of the system with
14 processors is over one hundred times faster than the
solution with 4 processors, however it is only 15 times
faster than the direct solution with one processor.
Therefore, the speed-up provided by 14 processors is
approximately 15, where the speed-up is defined as the
ratio s = T/T, where T, is the total time it takes for the
best direct sequential method to solve the system on one
processor and T, = Tg, + Ty, ® NIT is the total time
spent in one processor in the parallel algorithm, where
Ty is the time spent for forward elimination, Ty, is the
time spent for back substitution and NIT is the number of
iterations performed to obtain the solution within a
specific tolerance.

D 142

The ~efficiency of the algorithm is defined
mathematically as e = s/K , where s is the speed-up and
K is the number of processors. It is clear that the
efficiency of the proposed algorithm is very low for small
number of processors but it reaches values as high as 0.8
to 0.9 when 16 processors were used.

CONCLUSION

A parallel algorithm to solve banded systems of
equations is presented in this study. The algorithm is
based on the theory of matrix multisplitting. It is iterative
in nature and implemented on a pipeline architecture
consisting of 16 Transputers. Since the number of
available processors is small, the proposed algorithm is
presented as a two stage splitting which also performs
best with thin systems(small bandwidth compared to size). |
Theoretical convergence criteria was presented and the |
results of a numerical experiment were discussed and it
is concluded that the proposed algorithm can use parallel
architectures very efficiently.

REFERENCES

(1] Y. Saad and M.H. Schultz, "Parallel direct methods
for solving banded linear systems"”, Lin. Algeb. &
Appl. 88/89 , pp 623-650, 1987.

[2] 1. Gohberg, T. Kailath, I. Koltracht and P.
Lancaster, "Linear complexity algorithms for linear
systems of equations with recursive structure ", Lin.
Algeb. & Appl. 88/89, pp. 271-315, 1987.

[3] K. Datta, "Parallel Complexities and Computations
of Cholesky’s Decomposition and QR Factori-
zation", Int. J. comput. math. ,18, pp. 67-82, 1985.

[4] S.L. Johnson, "Communication Efficient Basic
Linear Algebra Computations on Hypercube
architectures”, J. Parallel & Distr. Comput. 4, pp.
133-172, 1987.

[5] S.L. Johnson, "Solving Tridiagonal Systems on
Ensemble Architectures”, SIAM J. Sci. & St
Comput., 8, pp. 354-392, 1987.

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993

