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ABSTRACT

A numerical procedure to determine the load-deformation response of H-columns under biaxial bending is
presented in this study. An incremental-iterative procedure based on the finite difference technique is employed
in this study to simulate the elastic and inelastic behaviour of prismatic beam-column subjected to increased
loads. The influence of residual stresses and initial deformations are also included in the study. In the adopted
procedure the flexural stiffness about x and y axes, and the warping stiffness changes are included according
to the distribution of yielded portions of cross section during each stage of loading. Correlation with existing

experimental results shows excellent agreement.

INTRODUCTION

A review of the literature pertaining to biaxially loaded
columns presented by Chen [1]. Wagner [2] was the first
to investigate flexural-torsional buckling. Goodier [3]
formulated governing differential equations pertaining to
beam-columns subjected to biaxial bending under the
conditions of small displacement and rotation. Equations
were also derived by Timoshenko [4], and Vlasov [5]
under similar assumptions. Goodier’s equations which
pertain to members loaded identically at each end, were
solved exactly by Culver [6] and approximately by
Thurlimann [7]. Birnstil, Harstead and Leu [8] have
indicated in their investigation the inelastic response of
H-columns under biaxial bending. Birnstial [9] also
conducted experiments on isolated steel H-columns,
which were tested under biaxial eccentric loading.
Inelastic behaviour of rotationally restrained columns
under biaxial bending and torsion using finite difference
method have been reported by Vinnakota [10].
Nakashima [11] studied buckling and post buckling
behaviour of steel beam - columns. Meek [12] studied the
¢ffect of plastic area deformation after local yielding.
The aim of this study is to develop a numerical,
simplified procedure for the solution of a generalized
problem for biaxially loaded columns with different
weentricities at each end. The influence of residual
stresses and initial deformation are included in this study.
The finite difference method is employed to solve the
general differential equations of equilibrium. A computer
program is developed in order to determine the load-
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deformation’s response. The numerical solutions are
compared with both experimental and analytical
investigations, to verify the capabilities of the proposed
model.

DERIVATION OF MATHEMATICAL MODEL

4.
3,

The following assumptions are made in the analysis:
. The stress-strain diagram of the material is ideally

elastic-perfectly plastic.
Strain hardening is neglected.

. The cross section retains its original shape during

deformations.
The deformations are considered small .
Yielding is governed by normal stress only.

The normal strain €, ; ,) at a point (1,£,w) of a cross

section situated at a distance z from the origin, and the
deformations (u, v, 6) of the pole of this cross section are
related by the following formula

e(,,.s_“,)=eo+v"n-u"£-0"w+e, (1)

where ¢, is the residual strain.

If the strain €n.£,

is inferior to the yield strain of the

material, the ﬁber is still elastic, and thus

On,8.0) = En,8,0)* [0 T V™0 U" §-0"0]+ 0, ¢ ) (2)

where o(, ; . is the normal stress at a point (n,{,w) of
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the cross section situated at a distance z from the origin
E(,,'s.u) is Young's mod}xlus at point (0,§.w), Oy 5 ;) iS
the residual stress at point (7,¢,w).

When the strain €, ; ) is equal to or superior to the
yield strain 0, ¢ ,) = £ 0y

where o is the yield stress
The internal forces are:
Axial force P = | ¢ n.daa) 9A 3)
The internal moments about the axes (¢, n and {) are
Mine = § 0(nt0) 7dA “
M'r; int =

Mg in =Gkp8'+6" § 0, ¢ )(52+,,2)

1 O(n ) EA )

dA- 6" § Ep ¢ o) @ dA (6)

In order to examine the external forces consider a
column in a deflected configuration at an arbitrary section
z = z, as shown in Figure (1). The deflection of the
centroid ¢ of the local coordinate ¢ and n are u and v.
The location of ¢ is defined by C:(u,v,z). Taking another
local coordinates (X,Y,Z) which is parallel to the global
coordinates (x,y,z). The bending moment M, and My at
a section z produced by the end moments

My = My + Z(My-M,o) ™M
M, = M, + %(My,—Myo) ®)
where M,, = - P.ey; My, = P.ejpatz =0
My, =-Pey M, =Pe, atz=1L
Mx(exy = My + P.v )]
My(exy = My - P.u (10)

u v
MZz(ex) = - t(Mxl—Mxo) o I(Myl-Myo) an

In order to equate the internal forces M; & M, and M,
in equations (4), (5) and (6) with the external forces M,
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& M, and M, a relation between the two coordinate axes
(¢,m,¢) and (x,y,z) is needed. They are related throug
the rotation matrix [R].

1 8 -2
Ri=|-01 v |° and thus: (12
A
M, M,
M, =[R] | M, (13|
M;— ext M, ext

Myea =M, +Pv+8M, -Pub O%ML-Mn)u'*%(NgL-MP)u’
M, . =-M,8 -Pv6+M,-P.u*%(Md_-M_)v’- %%-WV’(]4) |
Mo =My Pvu s My - Puv - 2(M,, -M,) - = (M, -M,)

<P
womw—,,\f‘f :ﬂ
\e\

END() _|

Figure 1. Column in space.

The differential equations are obtained by equating the
internal moments to the external moments in the
deformed configuration. However for doubly symmetric
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section such as H-shape,it may be assumed that :

f EgondA= f Eqewinda= f Eqeo@ndA= f Epe0tdA

f E(y f) WA = f Bt @EdA =00
2 ok
§ Eg.¢.0) 1dA = EL
2 .
§ Egtw §7dA = ElL

The flexural stiffness about x and y axes, and the
warping stiffness are not constant but change according
to the distribution of the yielded portion of cross section.
If all the nonlinear terms of displacements are neglected
and the effect of residual stresses and initial geometrical
imperfections are considered then:

EI)’(I) u" + P(uo + u) + MX (00 + 0) = My(16)
Elyp v" + POV + V) + My (6, + 0) = - M,(17)
Elw(i)on,‘(GkT'i‘k") 0 +Mx(u’o+u')+

u

v+ u-
L

L O(MYL-W =(

M,V +v)) - M, -M)=k§,  (I8)

where u,, v, and 6, are the initial displacement

and k" = | (0 + 05)(7’2 + £ dA
k' = [ o0 +£%) dA

Egs (16,17 and 18) are three nonlinear and
| nonhomogeneous differential equations of equilibrium for
' acolumn with three unknowns u,» and 6.

SOLUTION TECHNIQUE

The determination of the load - deformation response of
the column under a given load is reduced for seeking a
solution of Equations (16,17 and 18)

Considering the appropriate boundary conditions at each
end, these equations are coupled in u,v, and 6. As the
problem is not amenable to closed-form solution, a finite
difference procedure is therefore employed. The column
is divided into m segments of equal length. The
derivatives in equations (16,17 and 18) are replaced by
central differences at the pivotal points.

This results in a matrix equation of the form
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[A] [C] = [W]

In which [C] = a vector of the unknown deformations
(u.v and 6); [A] = a square matrix of size three (m-1);
and [W] = a vector of representing the right hand side of
the equilibrium equations.

The deformations corresponding to a given increment of
forces are computed by an iterative procedure. In the first
iteration, an increment of the deformations is computed
by using the flexural and warping stiffness corresponding
to the previous known deformations. In the next iteration,
another increment of deformation is computed by using
the flexural and warping stiffness of the updated
deformations. The unbalanced forces can be computed by
comparing the internal forces at the updated deformations
and the external applied forces for each iteration.
Iterations for eliminating the unbalanced forces are
continued until the unbalanced forces are negligible.

The flexural and warping stiffness are calculated
numerically by dividing the cross section into finite
elements as shown in Figure (2). The strain and stress in
each element were computed as the average values at its
centroid.

- | ondA
Els(o = 7 (20)
- | o¢dA
- | owdA
Bl i b 2)
(i) o

The ultimate load is given by the condition that
instability is imminent where large increases in
deformation results from small increments of the load .

NUMERICAL VERIFICATIONS

In order to verify the simplicity, accuracy, and
efficiency of the proposed model for predicting the
deformational response of columns a number of numerical
examples have been selected for the inelastic postbuckling
behaviour of isolated steel H-column. These examples
take into account the initial geometric imperfection,
residual stresses, and load eccentricities . The results are
compared with experimental results of Birnstiel [9] and
Aribert and Abdel Aziz [13].
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Figure 2. H-shape.

The cross section properties length, yield stress, initial
geometric imperfection and the eccentricities of loading
at the two ends for the four column specimens are given
in Tables (1),(2) and (3). The boundary conditions at
each end of the column were:

(1) lateral displacement is prevented (u”=v" = 0)

(2) Twisting is prevented (6’ = 0)

(3) The cross sections at the ends are permitted to rotate
about any axis in xy plane (v" and u" known),

(4) Warping of the end cross section is prevented
@’ =0).

Table 1. Dimension of column specimens in m_ .
Cross section properties

Example | Length | Nominal
size Flange | Flange Depth web
width | thickness thickness

1 24384 | S5x6 H | 127.3 12.2 159.7 84
2 3048 | 4WF13 | 1019 89 104.6 7.62
3 1000 | HEA100 | 100 8 100 6
4 1000 | HEA100 | 100 8 100 6

Table 2. Eccentricities of the loading and yield
stresses.

Eccentricities of loading (mm) Nominal
yield
Example s Botiom Aversge stress

e, ¢ e, e e, ¢ MP,

1 -23.4| 70.6 -21.6 | 729 -22.6 71.6 248

2 12.7 67.8 8.6 70.4 10.7 69.1 448

3 7 - - - - - 286

4 . i 2 = o 286
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Table 3. Initial Displacement of Column Specimens.

Initial Displacements
Example

Sweap maximum camber maximum Twist

bow in x direction bow in y direction (Radian)
1 0.0 0.762 0.001
2 1.016 -1.016 0.007
3 32.1
4 17.0 e -

The results of the proposed technique show a good
agreement with those of the experimental investigations
as shown in Figures (3) through (6).
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Figure 3. Load versus midheight-deformation curves
example (test no.7 of Ref. 9).
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Figure 4. Load versus midheight deformation curves:
example 2 (test no. 13 of Ref 9).
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example 4.
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CONCLUSIONS

The proposed numerical model presented in this study
simulates the behaviour of eccentrically loaded columns

Alexandria Engineering Journal, Vol. 32, No. 4, October 1993

not only in the precritical zone but also in the post critical
one. The influence of residual stresses and initial
imperfections are also considered. The flexural stiffnesses
about x and y axes, and the warping stiffness changes
according to the distribution of the yielded portion of
cross section during each stage of loading. The finite
difference technique is employed to solve the general
differential equations of equilibrium. The predicted
ultimate loads and load-deformation responses show
satisfactory agreement with the available tests and other
analytical approaches. In spite of being a solution for
elementary problems, the presented model can be
implemented in solving complicated structural problems.
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