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ABSTRACT

Singly symmetrical open section columns under axial load are only considered herein. In this study an
approximate formula for determining the torsional-flexural buckling load of thin-walled open sections is
developed. In order to evaluate the validity of this formula, the results are compared with the exact solution
as well as with some experimental results. The proposed approximate formula can be used for determining

the ultimate load of columns accurately.
INTRODUCTION

Thin walled cold-formed open sections are widely used
as load-carrying structural members. For these shapes,
bccause  of their low torsional rigidity and open
configuration, torsional-flexural buckling may be a
critical mode of failure. There are three possible modes
in which axially loaded columns may buckle. These
columns can either bend in the plane of one the principal
axes, or twist about the shear center axis or bend and
twist simultaneously.

For any given member, depending on its length and the
geometry of its cross section, one of these three modes
will be critical. For hot-rolled structural steel sections,
the load at which flexural buckling can occur is always
less than the buckling loads corresponding to the other
possible modes of failure. The Euler theory is therefore
used to determine the carrying capacity of most of the
sections. This, however, is not the case for thin-walled
open sections.

The basic theory of torsional-flexural buckling is
adequately documented by Timoshenko and Gere [1],
Vlassov [2] and Bleich [3].

THE BASIC THEORY OF TORSIONAL-FLEXURAL
BUCKLING

Consider a column of constant open section composed
of (n) thin flat plates as shows in Figure (1). The plates
may be of nonuniform thickness but are sufficiently thin
where their lateral stiffness is negligible in comparison
with the stiffness in their own plane. The length of the
column is large as compared with the dimensions of the
cross section.
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Figure 1. Thin walled open section.

The coordinates Y,Z are the principal centroidal axes of
the section and X is the longitudinal center line. Under
the action of external loads the column will deform and
it is assumed that the cross section of the column do not
distort.

The basic differential equation of bending and twisting
can be derived from the theorem of stationary potential
energy. The potential energy U consists of the strain
energy of the deformed column V and the potential
energy of the external loads U,. Where

1 2 2 2
Vo= o [ELYT - LT + ELOY + GI¢) dx (1)
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where I, is the polar moment of inertia of the cross
section referred to the shear center.

Finally the complete expression for the potential energy
(U) is the sum of Egs. (1 an 2).

L
1 nz n) nl

= = vl o+ w® + EI +
- f [ ELvY + EL K

cA(VY + wl - 20Az v'' +

20Ay w'p! - oIocb”] dx

GIp" - i

By using the theorem of stationary potential energy, eq.
(3) results in three differential equations of buckling

Ellvlv + OA(VH ! Zo(bn) =0 (43)
Elywlv + gA(WT + yo¢n) =0 (4.b)
EL OV + (oI, - GNY” + oAzy" - yw") = 0 (4.0)

All derivatives in eq. (4) are with respect to (X) axis,
and equations (4.a and b) express the equilibrium of the
forces tending to bend an element of the column about Z
and Y axes respectively. Equation (4.c) expresses the
equilibrium of the forces tending to twist an element of
the member about the shear center.

If the cross section of the column has one axis of
symmetry such as channel sections, where (Z, = 0 and
Yo #* 0), Eqs. (4) can be written in this form:

ELvY + Pvl = 0 (5.2)

Elywlv + P(wl -y " = (5.b)

EI 6" + (2P - GI)¢" - PywD) =0 (5.0)

The solution of Eq. (5), for monosymmetric cross
section column which has simple end supports, so that the
ends are free to warp and to rotate about the Y and Z
axes but cannot rotate about X axis or deflect in the Y
and Z directions, is made according to these assumptions:
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By equating the determinate of Eq. (5) to zero

®, - PP, - oyl = 0 ¢

where

- P)®, - P)

P, The Euler load about Z axis
Py The Euler load about Y axis
P, The buckling load for pure torsion
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Eq. (6) can be derived as:

(P - P)IBPZ - @, + Pop, + pBJ =0 (

Eq. (7) has three solutions, the first one, whicl
represents the critical flexural buckling load, is

po= B @

1
The other two solutions can be obtained by solving th

following quadratic equation

BPZ - @, + P)P, + PP_ = 0

where f = rc2 /i ro2
rc Radius of gyration about the centroid
ro Radius of gyration about the shear center

= ——[(p A ,/(p +P) - 4BPP] (9
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Eq. (9) leads to the critical torsional-Flexural buckling
load, which is always smaller than Py and Py, but it may
be either smaller or larger than P,.

APPROXIMATE THEORETICAL MODEL

As a consequence of the flexural-torsional buckling
behaviour described before and referring to eq. (5), the
flexural-torsional buckling results from the interaction of
two effects; bending about major axis (Y), and twisting
about the shear center.

The problem of obtaining the critical flexural-torsional
buckling load can be simplified, if it is restricted to
singly-symmetrical cross sections. Fortunately, this
grouping includes most of the cold formed shapes
commonly used for compression members.

For singly symmetrical cross sections, (Y axis is the
axis of symmetry), which may buckle in the flexural-
torsional mode, the critical buckling load is given by the
interaction of Egs. (5.b and c). These equations are
referring to the displacement (w) and the angle of rotation
(9).

For determining a simple formula for the flexural-
torsional buckling load, it is assumed that the relationship
between these two parameters is

= B 10
© 2¢ (10)

where m the distance between shear center and the web

plate
This relation is assumed according to the shape of the
cross section after buckling, as shown in Figure (2).
Egs. (5.b, ¢ and 10) give two values for the flexural-
torsional buckling load, the first one is

m

= ——FP 11
“ me-2 7 (n
The second value is
9 2
W= ————(SEL +G) ()
2r; -ym L

A comparison, between the results obtained from Eq.
(11) and Eq. (12), is made for different shapes and cross
section dimensions. This comparison shows that P_, is
always less than P_ ;. Therefore P, can be considered
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as the approximate critical flexural-torsional buckling
load for two hinged-axially loaded cold-formed column.
Thus,

2
2;(12 EIG + GJ') (13)
2, -ymL

Spr

Figure 2. Flexural-Torsional buckling of lipped channel.

Figures (3) through (9) show the comparison between
the results from Eq. (9), which represent the critical
flexural-torsional buckling loads, and the results from the
approximate equation Eq. (13), for different cross
sectional geometries. This comparison shows that the
approximate equation always gives values less than the
exact equation with a maximum difference less than 8
percent. This means that the approximate equation results
in conservative values and can be used for determining
the critical axial flexural-torsional buckling load for
different cross sections which has one axis of symmetry
accurately.

EXPERIMENTAL VERIFICATION

In order to verify the results obtained by the
approximate equation, a comparison with pervious test
results is carried out. In this study the ultimate loads are
calculated by using the approximate solution and
compared with the experimental ultimate load conducted
by Thomasson [4], Loughlan [5], Mulligan [6]. The
results show a very good agreement between the critical
load calculated by the approximate equation and the exact
equation. The ultimate loads are computed according to
AISI (7) as shown in Tables (1,2 and 3).
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Figure 3. Column curves for a/t = 60, b/a =1.0.
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Figure 4. Column curves for a/t = 60, b/a = 2.0.
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Figure 5. Column curves for a/t = 60, b/a = 3.0.
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Figure 6. Column Curves for a/t = 100, b/a = 1.0.
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Figure 7. Column Curves for a/t = 100, b/a = 2.0.
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Figure 8. Column Curves for a/t = 100, b/a = 3.0.
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Table 1. Thomasson's [1978] Long Column Tests.

spec L a b c t Nex N, Nexp/ P/
No mm mm mm mm mm (KI\F) (KN) N, P
A7l 2690 100.3 299.2 19.6 0.63 16.00 15.94 1.004 0.975
A 74 2690 100.5 299.2 20.6 0.64 16.20 16.59 0.976 0.975
A5 2690 100.5 299.2 20.0 0.64 15.50 16.51 0.940 0.975
A 76 2690 100.2 300.0 20.2 0.65 14.50 16.25 0.900 0.975
Al101 2690 100.5 299.8 20.2 0.94 36.90 34.73 1.062 0.976
A102 2690 100.5 299.7 20.0 0.94 35.00 34.68 1.009 0.976
A103 2690 100.6 299.3 19.6 0.94 37.10 34.57 1.073 0.976
Al104 2690 99.6 299.3 19.5 0.96 34.50 35.02 0.985 0.977
AlSl 2690 100.0 299.3 20.3 1.45 76.60 78.20 0.980 0.976
Al52 2690 100.0 300.1 20.2 1.43 70.00 76.16 0.920 0.977
Al53 2690 99.8 299.8 20,8 1.38 71.30 71.97 0.993 0.976
Al54 2690 100.4 300.6 23.4 1.39 73.00 74.39 0.981 0.972
Al156 2690 99.8 299.4 213 1.39 69.00 72.63 0.950 0.975
Table 2. Loughlan’s [1979] Long Column Tests.
spec L a b c t Nexp NS Nexp/ P/
No mm mm mm mm mm (KN) (KN) N, P
L15 |1905 |62.80 153.90 25.30 0.78 21.81 19.73 1.105 0.878
L16 |1600 [62.90 153.90 25.60 0.81 23.05 23.21 0.993 0.876
L17 |1295 |62.90 152.00 25.60 0.78 23.63 23413 1.022 0.878
L31 |1905 |61.80 178.20 24.60 1.63 75.65 74.82 1.011 0.930
L32 |1600 |61.60 177.80 24.70 1.63 75.65 78.44 0.964 0.930
L33 |1295 |62.00 176.70 24.90 1.63 80.10 85.44 0.937 0.927
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Table 3. Mulligan’s [1983] Long Column Tests.

spec L a b c t Nexp N, Nexp/ P/

No mm mm mm mm mm (KN) (KN) N, P

GM1 |1600 |79.90 155.40 17.60 1.14 43.61 42.47 1.027 0.887
GM2 [1905 [79.90 154.80 16.50 1,14 46.28 38.64 1.198 0.891
GM3 (3076 [79.90 155.80 16.50 1.17 36.49 39.45 0.925 0.891
GM4 3073 [80.00 154.20 17.10 1.14 37.38 38.31 0.976 0.886
GMS5 (1905 |79.30 155.30 17.70 1.22 52.51 44.21 1.187 0.887
GM6 |1829 |[80.10 230.40 16.70 1.14 42.72 43.90 0.973 0.969
GM7 |[2416 [79.90 230.80 16.90 1.14 38.94 38.04 1.014 0.969
GMS8 2997 [80.00 231.10 16.80 1.12 33.82 31.05 1.089 0.969
GM9 [2413 [80.00 229.40 17.80 1.22 48.06 44.16 1.088 0.966
GM10 (2519 112.60 113.550 19.20 1.22 48.95 45.74 1.070 0.810
GMI11 [1908 112.90 220.80 19.30 1.22 54.74 52.34 1.046 0.905
GMI12 (2517 |112.50 221.60 18.80 1.22 53.85 49.71 1.105 0.899
GM13 (2519 |112.80 221.40 18.50 1.22 52.51 48.02 1.093 0.907

CONCLUSION REFERENCES

An approximate formula for determining the torsional-
flexural buckling load of single symmetric open section
is developed. The basic theoretical model of torsional-
flexural buckling for axially loaded cold-formed column
is adopted and the differential equation which governs the
elastic buckling of symmetric open section is modified.
The results of the simple approximate formula for
estimating the critical buckling load have been compared
with rigorous solutions where the proposed approach is
shown to compare very well with the exact critical
buckling loads. The critical torsional-buckling load of the
approximate model gives satisfactory correlation with
some previously conducted experimental work. Therefore
the proposed approximate formula can be used practically
for determining the critical torsional flexural buckling
load for axially loaded columns.
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