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ABSTRACT

The transient thermal stress edge crack problem for an elastic strip with free and fully constrained boundaries
is considered. The plate is suddenly subjected to convective cooling on the face containing the edge crack while
the other face is insulated. The solution of the problem is obtained by using the superposition technique results
in a singular integral equation which is solved numerically. The results of the transient temperature and
thermal stress distributions in the uncracked strip are presented. Also, numerical results are obtained for the
stress intensity factor in terms of Fourier number, crack length, and different values of Biot number.

INTRODUCTION

The study of cracking in brittle solids under thermal
stresses is important in many engineering applications.
When a surface subjected to sudden change in
temperature, specially in the presence of cracks, large
thermal stresses arise around the crack tips. These
stresses may propagate the crack resulting in serious
damage. The important mode of mechanical failure is the
subcritical crack growth, which needs the determination
of the stress intensity factor as a function of time and
crack length.

There are many studies of a cracked plate subjected to
transient thermal stresses. For example, Sih [I]
considered the singular character of the thermal stresses
at the crack tips of a line crack in an infinite medium.
Rizk and Radwan [2] studied the cracked semi-infinite
medium subjected to sudden cooling in the form of ramp
function. Nied [3-4] discussed the problem of an edge
cracked plate under convective cooling and heating
respectively with free boundaries. Also, Rizk and Radwan
[5] analyzed the case of an edge cracked plate under
thermal shock due to sudden cooling in terms of ramp
function with free boundaries.

In this paper, we are interested in the problem of an
edge cracked plate subjected to convective cooling in the
face containing the crack with free boundary in the face
x = 0, and fully constrained in the other face x = H,
which is shown in Figure (1-a).
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Figure 1-a. The edge crack geometry with free boundary
at x = 0 and fully constrained boundary at x = H.
Figure 1-b. Contour I' used to evaluate the integral in

Eq. (11).

The problem is solved under the assumption that the
inertia effects are negligible. The previous work on
dynamic thermoelasticity seems to justify this assumption
[6-7]. Also, in this study the thermoelastic coupling
effects and the dependence of thermoelastic coefficients
are neglected. By assuming the material is linear, the
principle of superposition can be used to formulate the
problem in terms of a singular integral equation which is
solved numerically. The main results of this work are the
stress intensity factor as a function of nondimensional
time (Fourier number), crack length, and various values
of Biot number.
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MATHEMATICAL FORMULATION

The formulation of the crack problem depicted in
Figure (l-a), utilized the transient thermal stress
distribution from the uncracked strip. The procedure is
first to obtain the transient temperature distribution by
solving the diffusion equation, and to use it in the
uncracked strip with free and fully constrained boundaries
to determine the transient thermal stress distribution.
Once we obtain the thermal stress distribution for the
uncracked strip, the solution of the crack problem can be
obtained by applying the equal and opposite of these
stresses to the crack surfaces.

Temperature Distribution

Consider an elastic strip of thickness H is at an inial
temperature T, and insulated along the plane x = H. At
t = 0, the surface x = O is suddenly subjected to
convective cooling with the heat transfer coefficient h,
and the ambient temperature maintained at T,.

The heat diffusion problem can be formulated as follows

3% 1 a6
a? Dot i
0(x,00 =0 (¥))
k09w -6, 3)

ax
6H,Y _ @)
ax
where

0 (x,t) = T(x,t) - T, 5)
6, =T, - T, (6)

kand D are the material thermal conductivity and thermal
diffusivity, respectively. By applying Laplace transform
we can have [8]
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where E(x,p) is the Laplace transform of 6 (x,t) and
q2 = p/D. The solution of equation (7) under the
boundary conditions (8) and (9) can be written as

5(x,p) _ coshqH coshgx - sinhgH sinhqx (10

6, k .
p(coshqH + £ sinh qH)

Applying the inversion theorem of Laplace transform we
get
¥ ¢iw

0xt) , L SRS s G H rinh 1),
2 .
I z[coshqﬂ+%q8inhqm

(] v -i=

The integrand in equation (11) is a single-valued function
of z with simple poles at z = O and at the roots of the
equation

coshgH + ll:.q sinhgH = 0 (12)

By putting q = y(z/D) = in , then we can obtain the
transcendental equation

A tan, = Bi (13

where Bi is the Biot number defining by h H/K , and
A, = Hn,. So,the location of the simple poles are

zn=—Dn§=-%)\§ a=1,2,....0 (14

These poles are distributed in negative direction of real
axis. By applying the Residue theorem around the contour]
shown in Figure (1-b), and defining the dimensionless
quantities

The temperature distribution can be written as

T =

Txt)-T 2 = sinl‘cosln(x‘-l)e_‘g

(16

T ot x_%mzx_
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which can be put in the form

Tx,H-T, - f: sin A\ cols Ag(x '-l)e- 7 A2 i
To-Ta n=l k,,+§sin2x.

where the eigenvalues A\ are determined from equation
(13)

Thermal Stresses in The Uncracked Strip:

The elastic strip is assumed to be free at the boundary
x = 0, and fully constrained in the other boundary x =
H. So,it would remain flat under self-equilibrating
transient thermal stresses, i.e. we can assume that the
strip undergo uniform strain €,(t) over the thickness
H.The thermal stresses and strains would satisfy the
following relations (see for example [9])

T T T
0y =0 » Oy = gy (18)
&y = €z = &,(t) (19)

Also, in the absence of external load, the thermal stresses
would satisfy the condition of no resultant force in y and
z directions, i.e.

H H
f a;,dx =0, f o:dx =0 (20)
0 0

Applying the Hook’s law we obtain

1 i i

T
vy = E(c.vyy -vo,) +aTkx.t (20

&

where E , » anda are Young’s modulus, Poisson’s ratio
and coefficient of thermal expansion. Substituting
equations (18) and (19) into equation (21) we get

E
-y

0y (x,1) = — (60 -« T ()

Integrating equation (22) over the cross-section and using
the condition (20) we can have

H
e, ® = = [ TxHdx 23)
0

2
H
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Then the thermal stresses a;y (x,t) can be found as

H
o &) = = [[ Tdx - Tao] @4)
0

Substituting equation (17) into equation (24), the thermal
stresses become

™ + 82
sin“ A -7l
=2 3 e @
"2’:1 )\2+)‘°sin2)\
n T n

a;y(x *(-»)
a E(T,-T,)

= sinAcos Ay(x *-1) - ;)2
2% o= "co: BV o)

n=l )\n¢5sin 2\,

The Crack Problem

In the plane strain crack problem, the governing
differential equations are

(x - )V?u + 2(& + ﬁ) =0 (26-a)
Ix? axady
i
o - Dy + 228+ BV L0 a6b)
axdy  gy?

where x = (3 - 4») , and u, v are the x, y components
of the displacement vector. Because of symmetry the
problem is considered for y > 0. The boundary and
mixed conditions of the problem are

70y =0 , 0,0y =0 (27
oMy =0 uy) =0 (28)
u=»0 , v-=»0 a y—-o 29)
0y (x,0) =0 (30)

v(ix,00=0 ,0<x<a,b<x<H (3l-a)

04y (x0) =p(X) = = gy (x1) , 8 <x <b (31-b)
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The solution of the mixed boundary value problem can be
obtained by expressing the displacement components u,
v in terms of Fourier integral,i.e.

L2 LT s !
u(y)== { F(x,0)cosy® do +— f R(@y,B)e™Pdp (32-a)

27 ' LT s ;
v(ey) == { G(x,w)siny o do + — f Q(,B)e**dp (32-b)

where F, R, G, Q are unknown functions which can be
determined by substituting equations (32) into equations
(26). By using the stress-displacement relations, the
conditions (27-31), and defining the density function

av(x,0)

, 0<x<H (33)
ax

o(x) =

The crack problem can be reduced, after lengthy
manipulations, into the following singular integral
equation

b b
[ 45, [kx)o@ds=ZE D p(x), a<x<d (34)
" 8-X A 4p

where the kernel k(x,s) is in the form

k(xs) = [ Gxs,w)do 35)
0

where G can be found in appendix A. It can be seen that
the kernel k(x,s) is bounded as long as we have
embedded crack (a >0, b< H), but when the crack is
terminated at the boundary (a = 0 or b = H), some
terms in the kernel would be unbounded. So, we can
rewrite the kernel in the following form

k(x,s) = kf(x,5) + kj(x,5) + ky(x,5) (36

where kf(x,s) is the bounded terms as a—=0 and
b—-H , kls(x,s) is unbounded as a—=+0,b < H , and
kzs(x,s) isunboundedas a >0 , b = H i.e.

2
kfxa) = < d xR0 Rl 4% 48
5+X (+x? (+x°
kY o LRS-
2 (2H - s - x) (38)
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The singular behavior of the solution at the end points
can be obtained by following Muskhelishvili technique
[10], who assumed the unknown function ¢ as

$(s) = g(s) ®)
(s - a)'Yl (b = 5)72

where the unknown function g(s) is bounded with g(a) #
0 and g(b) # 0, and the powers of singularity v, , vy, a
the end points should satisfyO < Re(y,,7vy <I
.defining the sectionally holomorphic function

26 4 ()
S =Z i

P —— T

F(@) = l
T

and following the function-theoretic method [11,12], the
characteristic equations for the case of an edge crack (a
=0, b < H) are

cosTy; - 2(y; - 1)*+1 =0 @1)
cotxy, =0 42

The only acceptable root of equation (41) is vy, =0,
that is the function ¢ (s) is bounded at s = 0. The root of
equation (42) is y, = 1/2 . So, the density function can
be written as

8 g

Then the stresses are bounded at x = 0, and have
singular behavior at x = b. Defining the stress intensity
factor at x = b as

K®) = lim 2(x - b) 7y (x,0) (44)

x—b

where Tyy (x,0) is the stress outside the crack. Observing
that the stress in equation (34) outside and as well as
inside the crack, then substituting equation (34) into
equation (44) we get

K@®)=

b L)
4 . = $6)
o V2B b)[{ i dso{k(x.sm(s)dsl (45)
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It is clear that k(x,s) is bounded as x = b ands = b . By
using the definition of sectionally holomorphic function
defined in equation (40) and the density function given by
(43), the asymptotic analysis will reduce the Cauchy
integral into the form

b
l[ -89 __8® .pr 4
%) b2  (x-b)?

where B.T. is bounded terms. Substituting equation (46)
into equation (45),the stress intensity factor at the end x

= b is given by

K(b)=-%\/2_g(b) @7

NUMERICAL PROCEDURE

To calculate the stress intensity factor given in equation
(47), we should obtain the unknown function g(s) from
the singular integral equation (34) which is solved
numerically. Normalized the interval (a,b) by the
following change in variables

.2 _b+a, 2 b+a
e e b (48)

the singular integral equation (34) may be reduced to

+1

f____"Ldp +fk(r p)¥(p)dp = n(x+l)q(r) (49)
Lp-nD(1-p)? =
where
- (—2 i
yp) = (—)" g
b-a
= b == i
k(r’p) = P(x) = q(r)

Expressing the unknown function {(p) in terms of
polynomial of finite degree, and follow the procedure
technique developed in [2,13], the unknown coefficients
of the polynomial can be determined. Then the stress
intensity factor can be calculated from equation (47).
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RESULTS AND CONCLUSION

The normalized transient temperature and thermal stress
distributions, which are determined from equations (17)
and (25), are shown in Figures (2), (7) for different
values of Biot number (Bi = o, 20, 1). When Bi = o,
the solution corresponds to the case of unit step change in
temperature at the strip boundary (x = 0). The results are
plotted against the nondimensional distance (x* = x/H)
for different values of the dimensionless time (Fourier
number) 7 = tD/H?. As expected, when the Biot number
decreases, the temperature gradient through the plate
thickness decreases and the maximum thermal stress
decreases accordingly. So, the most severe case
corresponds to Bi = oo . Also, It can be seen that, at any
instant in time the thermal stress is tensile in the region
near the cooled surface, while it is compressive in the
other region near the insulated surface. This behavior is
different than that obtained for the thermal stress edge
cracked plate with free boundaries at which the thermal
stress is compressive in the interior of the plate and
tensile on the cooled and insulated surfaces [3,5], while
it is similar to the case of transient thermal stress hollow
cylinder problem with Bi = oo [14].
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Figure 2. Transient temperature distribution in the strip
for Bi= oo
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with certain amount of time depending on the Biot
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The most dangerous location of the crack propagation ! 2 |
is at x = 0, where the highest tensile stress occurs. So, (15
the distributions of the thermal stress at x = 0, for 0.00 — 1
various values of Biot number are shown in Figure (8). .00 020 0.9 4 /ﬁ’-“ 0.80 1.00

It is clear that, the variation of the thermal stresses is
strongly controlled by Biot number. The maximum
thermal stress does not occur at t = O, but it is delayed

Figure 6. Transient Temperature distribution in the strip
for Bi=1.

D 162 Alexandria Engineering Journal, Vol. 32, No. 4, October 1993



RIZK: An Edge-Cracked Platc with Free and Constrained Boundaries ...

0.20 —d 1 L A L 1
4 b
Bi = 1 r
:_3 0.15 3 9
T =0.1
I. : -?'o
| 4 1 - L
. =20 L
g 010 : =30 [
w
= ] [
’: 0.05 - -
= y :
= —0.00 - o
% < =
. »
-3 ] [
® -0.05 s
L
-0.10 —— —

T v r——
0.20 0.40 60 0.8 $.00

0.00 0.
x/H

Figure 7. Transient thermal stresses in the strip for
Bi=1.
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Figure 8. Transient thermal stresses on the surface x/H
= 0 for various values of Biot number (Bi).

The normalized stress intensity factors defined by
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K®)(1 - »)/Ea(T, - T/b (50)

are plotted in Figures (9) - (12). Figure (9) corresponds
to the step function change in temperature at the
boundary (Bi = o ), while Figure (10) represents an
example for different values of Biot number (Bi = 20).
It can be observed from the figures that the normalized
stress intensity factor reaches a peak value after a
significant period of time and then decreases as the
nondimensional time increases. Also, the larger the crack
length (b/H), the smaller the normalized stress intensity
factor. In Figures (11) - (12), the normalized stress
intensity factors are plotted versus 7 , for various values
of Biot number and for two different crack lengths (b/H
= 0.1, 0.4). The influence of Biot number and the crack
length on the stress intensity factors is obvious.

Because the maximum stress intensity factor is an
important parameter in the mechanical failure, it is
plotted versus the crack length (b/H) for different values
of Biot number Figure (13). It can be seen from the
figure that the normalized stress intensity factor decreases
as the crack length increases. This is because the transient
thermal stresses decrease away from the cooled surface,
as well as the compressive stresses which act on the crack
tips of sufficiently large cracks.
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Figure 9. Normalized stress intensity factors for different
values of the crack length (b/H), (Bi= ).
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Figure 10. Normalized stress intensity factors for

different values of the crack length (b/H), (Bi=20).

S
-
-
-

0.70
Bi = w
- 20
0.60 4 = 10 ™
=5
= 1
0.50 - = 0.1 -

0.40

0.30

0.20

SIF, K(b) (1-v)/E & (T,~T.) b"?

0.10

0.00 v i g A\l L
0.00 0.10 0.20 0.30 0.40 0.50

Time, v
Figure 11. Normalized stress intensity factors for
different values of Biot number (b/H = 0.1).

In conclusion, the integral equation analytic technique
used to determine the transient stress intensity factors is
simple and quite general. It enable us to calculate the
stress intensity factors as a function of the crack length,
Biot number, at any instant of time with no restrictions
on the crack length. Also, Figure (13) can be used
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directly to predict the severity of thermal shock in brittle
materials by comparing the calculated stress intensity
factors with the fracture toughness of that material at
certain crack length and Biot number.
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Figure 12. Normalized stress intensity factors for
different values of Biot number (b/H = 0.4).
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Figure 13. Maximum stress intensity factors versus crack
length for different values of Biot number.
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NOMENCLATURE

Biot number (h H/K)
Thermal diffusivity

Young modulus of elasticity
Heat transfer coefficient
Thickness of the plate
Stress intensity factor

ARIT MmO W

Coefficient of heat conduction
Temperature at any time

Ambient temperature

Initial temperature

v Components of the displacement vector
X,y,z cartesian coordinates

=

(=}

£ == -

a Coefficient of thermal expansion
u,x Elastic constants

v Poisson's ratio

g stress

€ strain

T Normalized time (Fourier number tD/Hz)
Appendix A

The function appeared in equation (35) takes the
following expression

G(X.S,w) = —ﬁ[(4_4w}.{ '*2(.0(5 +x))e(s¢x-2H)w

+((1-25w)(4wH—2wx-3)-1)e-(S-x¢2H)w
+((1 +25w)Quwx +3)+ 1) ef tx-4Hw
+(-4 +2w( =xe Bt tHe
-((-1 + 2= i) « 1) el * Ve
-((1+2ws -4wH) (-3 +2wx) - 1) e -*-2He
- (4 + doH - 2EIREEE o T RITRE 2 H) @

-(-4-2w( -x)et - *-dDey
where
A= B %HC—ZHQ} H c-4Hw
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