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ABSTRACT

| The present paper develops the ultimate load capacity for spatially loaded beams composed of thin walled open
cross-sections where all shear effects, stresses, deflections as well as resistances, are included in the analysis.
The general description of the constitutive behavior for isotropic materials is reduced for the extended
one-dimensional beam case to a finite constitutive law. All non-linear effects, deflections and material
non-linearities, are considered iteratively. By the use of the derivated comprehensive calculation program
essential differences to a shear- neglecting calculation are demonstrated by several examples.

. SUMMARY

The importance of incorporating all variables in the
analysis of beams ultimate loads is currently maximized.
Most newly developed codes include the ultimate design
method.Most works dealing with the shear deformations
were either for structures subjected to shearing forces or
elastically loaded. The influence of shearing force is
investigated by Windels [1] for inelastic plane systems,

- where interaction relations are given for sections under a
. combined action of normal force, shearing force and

bending moment. The effect of shear on fork supported
one span beams, spatially loaded in the elasto-plastic
range is investigated by Bamm [2] . Bamm kept the shear
stress distribution of the elastic loading constant through
the plastic range. A maximum difference in the ultimate
load capacity was found equals to 3.7% comparing to the
case where the shear effects were neglected. This value
was only true for his case study, where redistribution of

| the shearing force and the shear stress was not allowed.

Maier [3] introduced the first work involving all effects
of shear on spatially loaded structures. A beam-model
including shear effect was considered as a basis for the
geometrical detection, and the von Mises yield criteria for
the equivalent yield area was used during the plastic
range. - :

The present work develops the solution of spatially
loaded beams composed of thin walled open
cross-sections considering all shear effects, stresses and
material - resistances, within the  elasto-plastic loading
conditions. {

The second-order theory for spatially loaded beams with
shear deformation developed in [4] is modified and used
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to determine the ultimate load capacity for beams having
thin walled open cross-sections. Hereby the von Mises
yield criteria is employed to develop a finite constitutive
law represents the behavior of the isotropic material for
the extended beam case in the elasto-plastic range where
normal, and shear stresses are applied. For each loading
step the nonlinearity of the equilibrium equations and
material resistances is considered iteratively. And by
increasing the loadings in increments the ultimate load
capacity will be obtained.

Several demonstrated examples are given to illustrate
the accuracy and the efficiency of the developed method
and the computer program. Examples are intended to
clearly show the influence of including shear effects on
the ultimate load capacity of beams. Comparisons showed
the difference related to the exact solution, done here,
and the approximate ones.

MATERIAL RELATIONS PRINCIPALS

The true global triaxial stress tensor oj; can be
translated to a fictitious equivalent uniaxial stress o, by
replacing the yield stress g, by the equivalent stress o,
in the von Mises yield condition, which gives

2 2

o.=31, ' ¢))

where 12' represents the second invariaqt of tt;g stress
deviator-aij', and defined by,
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Equation 1 is valid not only for linear elastic range, but
also for elastic-plastic deformations. A complete proof to
Eq.1 and Eq.2 is given in [5] .

The relationships between stresses and strains in the
deformation increments theory are given by the
Prandtl-Reuss equations

Joidibal 2 de?
de ;=Y +0 _3_ s
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where eij'rcprescnt the strain deviator, G is the elastic

shear modulues and

€ z is the plastic equivalent strain.

Integrating Prandtl-Reuss equations, Eqs 3, yields finite
deformation theory [5]. For small elastic-plastic
deformations (elastic and plastic deformations have the
same order) a very good approximate solution could be
obtained, despite its quick convergence which proves its
simplicity and straightforwardness. The total strains are

given by
S'eij=(1+"ep)"ij"'cpakk6ij (4)

S is the secant modulues, and v_, is the elastic plastic

Poisson’s ratio

L

s="Ce )
ec
2y =1-(1-2)2 (6)
L B

v and E are the Poisson’s ratio, and the modulues of
elasticity respectively.

REDUCTION OF THE MATERIAL EQUATIONS TO
THE CONSIDERED BEAM STRESSES

Considering shear stress in beams, the only existing
terms other than zeros in the stress tensor oj; are 0;) =0y
longitudinal normal stress

Oy = 0Oy] = Ty Cross-sectional shear stress
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Also the only existing terms, other than zeros in the
strain tensor €;; are

€11 =€, longitudinal normal strain

€33 =€33=~Vep-&
€12=€71 =7Yxs / 2shearstrain/2

Using i = j = 1 in Eq.4 gives
o, =S. & 0

And fori = 1, and j = 2 the relationship between shear
stress 7, and shear strain v, is

Txs =Gep -Txs ®

where the elastic plastic shear modulues G, is given as

s
Sy 8 9
¥ TiET )

The equivalent uniaxial ‘stress 0, representing the von
Mises yield criteria for the beam case is obtained from
Eq.4 by applying the beam stress tensor, i.e.

o, = vai+3‘r§, (10)

- The equivalent longitudinal strain £.can be derived by
substituting equations 7 and 8 in Eq.10 and using
equations 5 and 9, hence

s.,=j 8,2(+37i.(2(1—:";)2 Q)

STRAIN-DISPLACEMENT RELATIONSHIPS

According to the coordinate systems and displacement
directions shown in Figure (1) and by following the
analysis developed in [4] , a refined displacement field is
determined by employing the method of successive
approximations.

The strain-displacement relationship associated with the
modified displacement field are derived and modified to
be applied in the elastic-plastic range. For the
longitudinal strain
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Figure 1. Typical cross-section and coordinate systems
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t=uy -yvy " ~zwg

;%(VB'Z+WB'2)+I‘y.$'+I‘l.¢'+I‘“.Q' (12.a)
The shear strain satisfying the force equilibrium in the
longitudinal direction is expressed by

= ' 1
Yy=2rp + a;[s,.\p +S,.9+5,.Q]1 (12.b)

In the above equations y ,¢ and Qdenote the third
derivatives of the displacements vg , wy and 8 which are
to be evaluated using initial displacement values obtained
by neglecting the shear effect.

The following extended cross-section properties are
introduced to simplify the expressions

Sy=}S,.de,S.=]'Siz.dF andS“=“fS‘,b.m.dF (13.a-c)

together with
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r 5 2.4 sBS“’d
w"l—t' s'la t

i

(14.a-c)

where S; and G; indicate the secant modulues, and the
shear modulues associated with each element having cross
section area equals to dF.

EQUILIBRIUM EQUATIONS AND BOUNDARY
CONDITIONS
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Figure 2. Uniformly distributed loads and the rand stress
resultants.

Consider the straight member Figure (2) under the
action of the distributed external forces acting along the
beam part length 1 and externally applied stresses at both
ends. Applying the virtual work principle, a system of
differential equations of the first order is derived [4] .

STRESS RESULTANT-DISPLACEMENT
RELATIONSHIPS

Referring to the finite material law given in the second
section, the material nonlinearity is introduced in the
analysis by discretizing the beam cross-section into a fine
mesh, Figure (3). T
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This is achieved by applying S for S; and G for G; .

and then using equations (7-11) developed in the secon(
section.

Accordingly, the stresses are related to i
corresponding strains by Eq.(15). Applying Eq.(15,
together with Eq.(12) into the equations defining th
stresses resultants in the integrable form for the stresse:
along the cross-section area, and by following the sam
procedure developed in [4], four first order differentia
equations are obtained and expressed in matrix form as

Figure 3. Discretization of the beam cross-section.

For each element the linear fictitious material
relationships are expressed as
g E = Si' € £
1£s=Gi.'y£s (15.a-b)

The linear coefficients S; and G; are functions of the
position of the element x; , y; and Z;

The coupling between the fictitious and actual material
relationships exists in the condition that for a certain
equivalent strain € calculated from the normal and
shear strains € and 7, ,the equivalent stress o,
calcnlated from the normal and shear stresses due to the
fictitious relationships given in Eq.(15) must yield the
same value generated using the actual relationship, Figure

@.
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Figure 4. Actual material relationship and the secant
modulues S.
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[S] and [S'] are rigidity matsices evaluated by th
integration of the usual and the extended cross-sectior
properties definitions. Hereby each element i of th
cross-sectional area is multiplied by its own fictitiou
relationship S;, and/or G;

Eq.(16) and the following three definitions

¢,=—w,'.¢,=V.,'andp=B’ (17
give the stress resultant-displacement relationships.

DETERMINATION OF THE ULTIMATE LOAD
CAPACITY

The ultimate load capacity is defined as the load step
which the deformations continue to increase while the
load ceases to do so. This condition occurs when either
respectable zones along the beam are fully stressed to the
plastic range i.e., equilibrium between the internal and
external stress resultants is no longer satisfied, or the
developed system of equations, due to the second order
theory is unsolvable. When the shear deformation is
included in the analysis the ultimate load capacity is also
assumed to be reached when the equivalent strain of any
cross sectional element equals a pre-defined maximum
value representing the damaging strain of the used bean

Tte ultimate load capacity is determined within two
nesied calculation loops. The inner loop by which the
rigidity matrices iteratively corrected until the internd
and external stress resultants of each cross section are in
equilibrium. The outer loop deals with the increase in the
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proportional load until the ultimate load capacity is
reached.

The developed computer program is based on the
transport matrix method. The beam is divided into parts,
Figure (5). Each part is divided into segments j to allow
for the numerical integrations of the system of equations
to determine the transport matrices. Finally each cross
section k is discretized into elements, Figure (3). A
summary of the inner loop is given hereafter.

} [
1 2 3—l[ 1
n o, n+
Parts 1 L l II___H
]I ] 1

I
123 i oj+1

Cross-sections _.‘..i_H_i '_.tl._
k+3
123 k k+t

k#2

Segments

Figure 5. Beam’s parts, segments, and cross sections.

For each cross section k the following mathematical
operations are performed:

1- The external stress resultants are determined from the
equilibrium equations, section 4.

2- For each cross section element i the normal and shear
strains are calculated due to the linear terms of Eq.12
with the aid of the existing displacements. The
equivalent strain € is then evaluated using Eq.11.
The new corrected value of the secant modulues S,
corresponding to the equivalent strain can be obtained
according to the actual material relationship, Figure
(4). Also the new values of the elastic plastic
Poisson’s ratio- and shear modulues are evaluated via
Eq.6 and Eq.7 respectively. The new internal stresses
can then be determined due to the new fictitious
material relationships using Eqgs.15.

3- When the previous step is completed for all elements
of the cross section k, the rigidity matrices for this
cross section [S], and [S‘]k depending on the fictitious
relationships and their inverts can be developed and
prepared ‘for the next iterative solution. Also, the
internal stress resultants are calculated from the
internal stresses according to their definitions. The
integrations are carried out as summations of the
forces developed from each cross sectional element.

4- A conversion is considered for the cross section k,
when the relative difference between the internal and
external stress resultants does not exceed a pre-defined
small value.
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NUMERICAL EXAMPLES

The examples listed in this section are chosen to clearly
illustrate the influence of including the effects of shear on
various beam systems, and loading conditions. These
examples have been treated previously in the literature,
and have practical dimensions.

Example 1
P, =1kN/m
P El lm i S
% i g y.v
J g 1 i
T 200" K IS0E SR Ll

HE 200 B

Figure 6. Example 1, Fixed ends beam loaded in the
z-plane.

The linear system of the one-span beam with two fixed
ends, Figure (6) is considered. It is loaded inplane at the
center with a starting uniform load of 1°kN/m in the
z-direction. The material relationship used is linear
elastic-ideal plastic with a yield stress equals to 24
kN/cm? , elastic modulues E=21000 kN/cm? , and
Poesson’s ratio v=0.3. The equivalent strain is permitted
up to 35 times the yield strain. These material coefficients
are used for all the examples that follow. By increasing
the load with a load factor o the ultimate load capacity is
determined. To demonstrate the shear effects, the solution
is obtained also by neglecting these effects. The
load-deformation curve of the midspan vertical deflection
plotted in Figure (7) shows an increase in the deformation
by considering the shear effect within the elastic range by
27.3%. It is also showed that neglecting shear leads to an
over estimation of the ultimate load capacity by 28.3%.
Some comparisons are presented using other ultimate load
theories. : :

Considering the interaction equations between bending
moment M, normal force N and shearing force Q due to
Windels [1], the ultimate load capacity is reached when
the first two plastic hinges at the supports are formed due
to the interaction between Q and M. They are calculated
due to the linear elastic theory. At the ultimate load
factor ar,
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(M) =0 P, L12,(Q))p =P, L2

The load factor is found to be o, = 107.6

PZ'PE '—-Py
P,=o.2Pz
: 2, ®Z5 F-30€7
% E y.v p;-zpy=°°
1 7Y Ypz™Ypy ™0
1 t=1000°" T
Z.W
HE 600 B

Figure 7. Load-deformation curve.

The stresses at midspan are within the elastic range,
however, the beam reaches its ultimate load capacity.

The extreme case for fully plastic shearing force occurs
when the web caries only a uniformly distributed shear

stress with a maximum value of 7., =0 y;4/ V3. The
ultimate load factor is then equal to a,=125.4

Neglecting the shearing force, the failure occurs due to
the plastic hinges theory when three plastic hinges are
formed. In this case

2 M), = a, . p, L%/8

With a fully plastic bending moment results from the
program, when neglecting shear effects, the ultimate load
factor is found equals to o, = 154.5, using the above
equation.

Table 1 shows the relative differences between the
various theories

Table 1. Ultimate load factors for example 1.

Method a, |Rel Diff
to last
one
Plastic hinges neglecting shear 1545 | 28.75%
Plastic hinges with shear interaction due to [1] | 1076 | -10.33%
Fully plastic shearing fore 1254 4.5%
Ref. [3] considering shear 192 | 067% |
Present analysis neglecting shear 154 | 2833% |
Present analysis considering shear 120 0% J

The result listed in table 1, due to the present theory
considering shear effect agrees remarkably well with Ref

. C 142

[3]. Very close results are also found between the plastic
hinges theory, and the present results when shear effect
are neglected. The difference between the present exal
study result and the plastic hinges method when shex
interaction is included related to that the last method uss
the elastic theory in calculating the stress resultants. By
the exact method considering shear the bending moments
at the supports begin to decrease due to shear interactios,
starting for the load factor o= 110. A comparisa
between the moments at the supports, and the moment &t
midspan, where the shearing force equals zero, is plotted
in Figure (8). For the same mentioned reason, and duct
the approximation involved while including the shear
interaction, the results generated by the plastic hinge
method are believed to be far from the actual occurring
values.

Load Factor

0 ol 4 60 &0 100 120
M (kNm)

Figure 8. Load factor-bending moments curve

Example 2

P,.P5
i R
1 .-

T (=i000°™ |
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Zpl'zp’3~30°"

,szypy=°'°

Zz,W

HE 600 B
Figure 9. Example 2, Fixed ends ‘beam spatially loaded

The totally fixed beam shown in Figure (9) is considered.
It is spatially loaded with uniformly distributed vertical
and horizontal loads acting at the middle of the upper
flange. The system is chosen to demonstrate the effect of
shear under torsional loadings on the ultimate load
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shear under torsional loadings on the ultimate load
capacity. A comparison is performed with a solution
neglecting shear [6]. The load-centroid horizontal
deformation curves are plotted in Figure (10). Both
solutions are identical within the elastic range. However,
taking the effect of shear into account leads to a reduction
of about 3% in the ultimate load capacity. This reduction
is due to the shear interaction by the warping torsion at
the supports, and the high St. Venant torsion occurred
near the supports. The distribution of these torsion
moments along the span, at the ultimate load stage are
shown in Figure (11).

Figure 10. Load-Midspan horizontal deformation curve
for example 2.

&
0 """"5""""'"-5 ------- "’Td.dTadea-n. 7 ot
2 H : ~— 8t Venant Tasion Mamer
g ' y
ol S T ——
]
g
10

Figure 11. Distribution of torsicn memests along the
span o (e Ultimate load stage.
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Example 3
L/1000
P2
W ’ NC 44.5
s o e
L 1 1. y.v
I w2 1

W
HE 900 A

Figure 12. Example 3, Dimensions and system of
loading.

The one span fork supported beam of Figure (12) is
considered to investigate the effect of torsion aand
shearing force or the ultimate load capacity by rariable
beam spans. It 5 loaded with an eccentric concentrated
single load aprtied at midspan in the vertical di=ction on
the top cho. The eccentricity is always takm equal to
one thous=idth the span. The ultimate load cipacities are
obtaines for several beam spans. The distrdutions of the
ultims¢ moments M, relative to the fullplastic moment

with L/L, ratio are plotted in Fjure (13). L is
deined in [3] as the beam span at viich the torsional
rackling stress has just reached the y-Id stress. L, value
was given equals to 7.89 m in [3].

. :
09 |------- e s R S
.!j._a- 5 $ s .
il i o H
[07: [ SR A besodssns Thoeeed Froccomediecaann. feracnnnn
a ! i : \' H
= b : H $ ~ :
; 07 i §F>smatoe ‘"‘:""""T;‘\“\""""“'? """"
: L Al \\‘
o8 E.-2o2 - sidaingshear ~ f----a--S R S
_vegledting shear [6] \\
Q5 fremmmmeemoees Considedngshear (3] [~~~ -----=- foeeeenes
e ] H
i i i |
04 1
0 a2z 04 06 08 1 1.2 14
L/Ly

Figure 13. ul+/ate load curves for fork supported one
span beam d» {0 eccentric single concentrated load.
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Two ultimate load curves are plotted, as well,
considering shear due to Maier [3] and neglecting shear
due to Heil [6]. The present theory is well compared with
Ref.[3]. The comparison with the ultimate load curve
neglecting shear shows that, for long spans shear has
minimum effect on the ultimate load. For medium spans
considering shear reduces the ultimate load capacity with
about 2-4%. The big differences in the ultimate loads for
short spans occurred because the shearing forces reach
their full plastic values. It should be noticed that for very
short spans the beam theory is not applicable.

Example 4
Pz yp_=3cm
IIEEENENEEEEEENN| 5
8ic™m :. P (kN/m)
N - WNF10P 2 (kN) Y

z,w
1841881.8°™

Figure 14. Example 4, Dimensions and loading

The spatially loaded continuous beam of Figure (14),
previously treated elastically in [4], is considered. The
loadings are increased to the ultimate load capacity of the
system. The load-deflection curves, considering, as well
as neglecting shear, are plotted in Figure (15).

200 ; - : .
; : ; 160.5
N e N e ot *
160 [oceesnonfoes /-'1 ----------
e P 15081 :
7 H H
§ 0 e
an -+ Negledting sheer
H — Considering shear
L et T S
0 1 1 | 1 |
0 0.06 o1 Q15 0.2 0% 03
Wm (am)
fig 15

Figure 15. Load-Deflection curve for example 4.
The linear inclinations of the curves within the elastic

range agree with Ref.[4] where an increase in the
deflections by 43 % takes place when shear is considered.
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The ultimate load capacity is reduced in this case by
about 11%. This value is small compared to the val
obtained in example 1. The ultimate load capacities ar
evaluated for this example several times, using differen
more relative normal force loadings, which proves th
shear effects decrease relatively with the application of
the normal force. when the beam is no longer loaded by
the normal force, the decrease of the ultimate load
considering shear is found to be 32.5%.

CONCLUSIONS

The general description of the constitutive behavior for
isotropic materials is reduced to a finite constitutive law
applied to beams, where shear stresses and deformations
are taken into account.

Accordingly the previously developed second-order
theory for spatially loaded thin walled beams with shear
deformation is modified and applied to determine the
ultimate load capacity for beams composed of thin walled
open cross-sections. Hereby the effects of shear
concerning deformation, stresses and subsequently the
distributions of stress resultants for spatially loaded beams
within the elasto-plastic range until the ultimate load
capacity are taken into account. The nonlinearity of the
equilibrium equations and material resistances is
iteratively considered. :

A comprehensive computer program is developed. Some
practical systems are solved as examples. The comparison
with other exact method considering all shear effects
proves the accuracy of the developed technique.

It is also shown that the effect of shear should not be
neglected. For practical dimensions and loadings a
reduction of the ultimate load capacity of 28% is found
when shear effects are considered. This value reaches
more than 32% for beams with short spans but still obey
the beam theory assumptions (I/h is more than 10). Also
the distributions of the stress resultants are affected. The
influence of shear stress due to torsion is less than that
due to shearing forces, as expected. According to the
beam slenderness ratio the reduction of the ultimate load

can reach the value of 4%. For all cases, the applying of
normal forces reduce the influence of shear on the
ultimate load capacity. Finally the assumptions used to
s1mp11fy the approximate methods dealing with shear
effects can give unreliable solutions.
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