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SYNOPSIS

Conventional procedure for study and analysis of space frame structures assumes that the members of these
structures are geometrically perfect. Also the procedure assumes that the joints-of space structures are pinned
or completely rigid. Space frame members may suffer from geometric imperfections, also most joints of these
structures are semi-rigid. A new space frame member tangent stiffness matrix which incorporates both the
effects of member geometric imperfection and joint properties was developed.

INTRODUCTION

l. Space frame structures are widely used in practice.
These structures can be used to cover large area
without intermediate supports, while at the same time
attain a very small weight of structure material per
unit area. The two main components of any space
structure are the members and the joints. Many new
prefabricated joints have been developed. Most of
these joints are not perfect pin nor perfect rigid but
semi-rigid. Also space frame members may suffer
from geometric imperfections along their length.
These imperfections may ‘be due to errors in
fabrication, errors in erection and/or due to misuse of
the structure after erection.

. It has been realised that the pattern and the value of
imperfections along the length of the compression
member affect its behaviour significantly. Also the
joint behaviour makes-an important contribution to the
behaviour of the whole structure, and the uncertain
joint performance has been one of the critical factors
in many structural collapses. The object of this
research is to develop a tangent stiffness matrix for
space frame member. This matrix mcorporates both
member and joint 1mperfect10ns

effect in case of open cross section members. For
closed section members, where most space structures
consist of, the geometric imperfection that need to be
considered is the initial bow of the members. Any
arbitrary crooked shape of an imperfect member as in
Figure (1) can be expressed as an appropriate
summation of first, second and higher order sinusoidal
curves (refs 1, 2) such as
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where y,, ¢; are as shown in Figure (1)
4. In practice members buckle in the shape of their first

and/or second order modes. It is therefore considered
sufficient for modeling the geometric imperfections
that are likely to enhance the possible modes of failure
in compression. So the member imperfections will be
expressed using only the first two terms of Eqn 1to
give

Yo = elsmef + ezsmz_gf | S v)

MEMBER IMPERFE IO S |
CT N This approach has been considered by Hatzis (ref. 2).

5. Referring to Figure (2) for prismatic imperfect
member, and from the beam-column theory, the
deformation y; of the member measured from its
initial position is

3. For space frame members, imperfections along the
member length are initial curvature (bow or out of
straightness) about the two principal axes of the
member cross section. Also initial twist may be
available. Twist imperfections have only significant
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where
M, M,° are the end moments
is the axial force in the member

q is nondimensional axial force parameter
= Q/Pg

€1,&9 are the amplitudes of the imperfections

¢ VY Q/EI

L is the member length

Pg is the member Euler load = #2EI/L

E is the modules of elasticity

I is the moment of inertia of the member cross
section

(a) imperfect
member

(b) mode 1.

(n) unlonded

(L) Loaded Q G £ 4
&
t 8‘

M‘; !
Figure 2. Deformation of unloaded and loaded imperfect
member.

The total deformation y measured from x-axis can be
obtained by adding Eqn. 2 to Eqn. 3 to give

M sing@-x) L-x) My singx x
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The differential of Eqn. 4 with respect to x evaluated at
x=0 and x=L for 8, and 6, respectively gives
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where », and », are given in Table 1. Solving Eqns
for M, and M, leads to
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¢, and c, are the ordinary stability functions given i
Oran (ref. 3) and are listed in Table 1.

where

e=¢L=myq , v=ey-1 ©
JOINT IMPERFECTIONS

6. Joint imperfections considered are joint stiffness (nc
pinned nor rigid but semi-rigid), and joint size. Th
joint stiffness is represented by the stiffness of a zero
length spring at the ends of the member. The joir
size is represented by a rigid arm with its length equa
the size of the joints.

Joint bending stiffness

7. Figure (3) shows a geometrically imperfect membe
with springs at its ends. The slip rotations (th
difference between the base member end rotations an
the joint rotations), due to the bending flexibility o
the joints are ¢; and ¢, at ends 1 and 2 respectively
The total joint rotations are

OM-05 8, OF=05+0, (0
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Table 1. Stability function of frame member.
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Figure 3. Imperfect member with end springs.

The slip rotations ¢; and ¢, depend on the bending
stiffness k;,, and k,y, of joints 1 and 2. These stiffness
can be related to the bending stiffness of the base member

by

g M" ML : M," ML -
B i B st > . S &
"k, E ! 2= g2 (N
where
EI EI
81=(-f)/klb > 82=(T)/k2b (12)

Substitute the values of ¢, and ¢, from Eqn. 11 and the
expression of 6,° and 6,°
from Eqn. 5 into Eqn. 10 and solve for M;™ and M,™ to

give
m EI m m
M, =—L-(°1191 +Ciafly —Aj e -A ey,

EI
M2m =r(C120rln +C220I2n —A2lel —AZZ%) (13)
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It is worth noting that any combination of end conditions
(pinned, rigid, and flexible) can be obtained from Eqn.
13 by substituting the appropriate value of &; and ¢,
(e=0.0 for rigid joint and £=co for pinned joint).

Joint stiffness and size

8. Figure (4) shows an imperfect member with rigid
parts at the ends, the length of which represents the
size of the joints. The total length of the member
between the centres of its joints is L, and the size of
the joints ar \\L and AL for joints 1 and 2
respectively, and the length of the base member is
AL.

Consider equilibrium between the forces at the ends of

the base member with springs and the forces at the

centres of the joints as shown in Figure (4-¢), then
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M, =M;"+1,LS-QA L8, , M,=M," +1,LS-QA,L8, (16)

where M{,M,,0,,0,, and S are as shown in Figure (4),
and M,;™,M,™ are as given in Eqns 13 after replacing L
by AL. The rotations at the ends of the springs ;™ and
6,™ with respect to the chord of the base member are
related to the rotations 6; and 6, at the centres of the
joints 1 and 2 with respect to the chord of the whole
member by

Figure 4. Imperfect member with springs and rigid arms.

0T =p,- 2

_02_'):1' (17)

. NG

The shearing force S is related to M;™, M,™, and Q as

Mlm +M2m +QA 18
= ——— (18)
The value of A can be obtained from the condition

Substitute the values of M;™,M,™,S, and A in Eqns 16,
then

EI
Ml=..f('yl10, +'71202"31131 -8B 12%)’
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where
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B2z = )\L(4 q)[hz( 1172C12+€22) +Cp *C 1
and hy=\;/\ , and hy=XA,/\. It can be seen that if the
joints size is neglected (i.e h; =h,=0), the expression in
Eqns 20 will lead to the same expressions in Eqns 13 for

case of imperfect member with end springs. Also if the |

member is geometrically perfect (i.e e, =e,=0) Eqns 20
lead to the same expressions derived by Fathelbab (ref.
4) for member with joints imperfections only.

EFFECT OF IMPERFECTIONS ON AXIAL FORCE

9. For the space frame member shown in Fig. 1, and
considering imperfections about the two principal axes
y and z, the initial relative axial strain p, due to
imperfection is

2
‘l’ 2 2
po=X_ T (e +e5)
) Lz gl In " “2n

22

where e; and e, are as shown in Fig. 1, and n refers to
axes y and z. For loaded member in Fig. 2, the total
relative axial strain will be

QL
p===+ Y p (23
E A n=y.z bn
where gy, is the bowing axial strain (including the initid
strain due to initial bowing) about the two principal axes,
and A is the member cross sectional area. The value of

Mo 18
Bon=b1n(01,+65,)° +b2, 67, -03)° ()

by, and b, are the so called bowing functions given by
Saafan (ref. 5). the value of these functions are
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(cln i °2n) (°2n -2) b Con
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and ¢, and ¢, are the stability functions given in Table

10. If the joints at the ends of the member are not
completely rigid under the applied axial force Q, but
have axial stiffness k;, and k,, at ends 1 and 2
respectively. Then the zero length spring represents
the joint should have an axial stiffness equal the
stiffness of the joint. The axial force in Fig. 3 is
related to the net relative axial strain by

——(1 +€1,+E2x) =B = ¥ Bpntho (26)
n=y,z
or
,‘.2
Q =EA53(I‘ - Z "’bn + —2' Z (_‘ +e2n) (27)
n=y,z L“ n=y,z
where
1
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11. If the joint size is considered as for the member in
Fig. 4, Eqn. 27 should be modified to include the
effect of joint size and L should be replaced by AL.
The modification of Eqn. 27 was performed by
Fathelbab (ref. 4) as follow

“Q=EAg (- L Cpp+: E Cop) (29)
n=y,z n=y,z
where

= %(h,e}, +62) + A[b, (1+2h,)8,, +(1+20.)8, ¢, b, 1
ooy G0

+b,10,,-0p, 01,01 +
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and
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12. From Eqn. 29, the nondimensional axial force
parameter q, can be written in the form

Alexandria Engineering Journal, Vol. 32, No. 3, July 1993

q.-idw o(B =y Gy <oy .)l

2
- A u—c,'-c-ﬂ:q-c.)
where s, is the slenderness ratio of the base member

(lL)’ : (32)

about n-axis = AL/ ‘/In/A , and Pg, is the Euler load
about the same axis. If the value of q, from Eqn. 32 is
substituted into Eqn. 27, the latest can be rewritten in the
form

_EI, x?
QL= T(FQ) (33)

where 1 is a reference moment of inertia of the member
cross section, and q is the axial nondimensional
parameter w.r.t. this inertia.

EFFECT OF IMPERFECTION ON TORSIONAL
MOMENT

13. As the twist imperfection effect is negligible for
closed section members, so only joint imperfection
is considered. If the joints have torsional stiffness k;
and ky at ends 1 and 2 respectively, then the
relation between the torsional moment M, and the
relative twisting angle 6, will be

M, = e, (34)

where G is the shear modules, and J is the polar moment
of inertia of the member cross section, and

1 GJ

G
& =—— . JEREEEE  Ea= ik, (3D
t )\(l +e]t+€2t) 1t D 1t 2t L ( )

MEMBER TANGENT STIFFNESS MATRIX

14. The expression in Eqn. 20, after generalized for the
two axes y and z, along with Eqn. 34 and Eqn. 33
relate the independent member end forces to its

relative end deformation. These expressions can be
written in the form

{8} ={fw} (36)

where {S} is the vector of the independent member end
forces, (u) are the relative end deformations, and f are a
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set of nonlinear functions in (u). These functions include

the effects of member and joint imperfections as well as

the effect of axial force.

15. For any given displacement u, Eqn. 36 can be
differentiated to give

{AS} =[tl{Au} 37

where
{a8}T={AM,,,AM,,,AM, ,AM, ,AM,AGL}

{Au}T={A01z’A022’A0ly’A02y’A0t’AI"} (38)

and [t] is the member tangent stiffness matrix w.r.t. its
local current axes. The elements t; of [t] are given by

43 as; as, 3q

ij 6u Oq au for 1,j=1,2,...,6 39)

Here only one element (t;;), as an example, will be
evaluated and the rest follow in similar way

. BMIZ oM,, dq
ne aolz aq 36,,

B,
T Y11 Y 1B Y1282~ Prsa®yy —Bm%’]g: “

> denotes differentiation w.r.t. q, and v;,,¥122:8112:8122
can be evaluated from Eqns 21 in terms of c¢;,c,,c;, and
¢,. The value of ¢, and ¢, can be obtained in terms of b,
and b, from the relation presented by Saafan (ref. 5),
where

i N

1 3 s =
472 4x?

€17C2

(41)

The differentiation of q in Eqn 39 can be evaluated from
Eqn. 32.
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15. After evaluating all elements of the tangent matrix
[t], this matrix can be transferred from the member
local current axes to the structure global axes. This
transformation is done by considering geomelry,
equilibrium, and orientation of the member. Ora
(ref. 3) presented a procedure for this
transformation.

CONCLUSION

Expressions relate the independent space frame end
forces to its end relative deformations were obtained.
These expressions include the effects of member and joint
imperfections as well as the effect of axial force and
bowing functions. A procedures to obtain the member
tangent stiffness matrix in its current local axes wer
presented.
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