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ABSTRACT

The case of confined seepage beneath a concrete dam with an end sheet pile and a downstream inverted filter
is investigated in this paper. The theory of complex functions and the Schwartz-Christoffel transformation are
used to establish equations by which the seepage taken by the filter may be estimated. A system of graphs is
presented to study the effects of the length of sheet pile, the thickness of the permeable layer, the base width
of dam and the length of filter on the seepage taken by the filter. The study led to a criterion for designing
the optimal length of filter. A simple and practical design chart is presented. Finally a numerical example is

provided to explain the use of the design chart.

INTRODUCTION

The problem of seepage beneath a concrete dam resting
on a permeable soil of finite depth has been investigated
by many researchers adopting different approaches
(Muskat 1937, Pavlovsky 1956, Harr 1962 and Kochina
1962). According to Forchheimer’s trial and error method
the problem was graphically solved (Casagrande 1935).
An approximate solution for the problem accounting for
the existence of a downstream filter (Hathoot 1980) was
presented. Another case in which the filter was installed
partially beneath the dam floor and extending in the
downstream direction was also investigated (Hathoot
1986). The case of seepage beneath a dam with sheet pile
was solved independently by (Muskat 1937 and Pavlovsky
1956). They also provided graphical solutions for the case
of symmetrically placed pilings (Harr 1962). In their
solutions they did not consider the existence of a
downstream filter. Hence the objective in this paper is to
investigate the proper length of a downstream filter for a
dam with an end sheet pile considering flow through a
permeable soil of limited depth, Figure (1).

MATHEMATICAL MODEL

The differential equation that governs the two
dimensional flow in porous media is that of Laplace:

v2¢=?_2.%+a_22=o (1)

where ¢ is the velocity potential given by:

<I>=k(f..—y)+C #))
Pg

in which k is the hydraulic conductivity of soil, p is the
pressure, p is the density of water, g is the acceleration
due to gravity, C is a real constant and y is the vertical
coordinate of a point in the z-plane, Figure (2-a).

In the mathematical treatment the following assumptions
are considered: (1) The soil underneath the dam is
homogeneous and isotropic; (2) the upstream channel bed
and the filter are equipotentials, whereas the base of the
dam, the sheet pile and the impervious stratum are
streamlines; and (3) water follows the path of least
resistance and is being taken mostly by the filter. Thus
channel bed downstream from the filter is consndered to
be a streamline (Hathoot 1986).

The correspondence between points in the z and t-planes
is shown in Figures (2-a) and (2-b). From the Schwartz-
Christoffel transformation between the z and t-planes
(Harr 1962) we have:

t
z=M o + N 3
1 (- DE2 - 312
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Figure 2. z,t and w planes.

in which M and N are complex constants.
Making the substitutions 62 - 2 = 72, tdt = - 7dr
and 1 - 2 = 72 +612where512 = 1 - 82, we obtain

' __ M (6 2—t2)1/2 3 6 " (4)
z 6—1 ctan[—s_l__ arctan(;s_l) N

At points G, z = i S and t = 0; we find from Eq. 3 that:
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N =iS @)

in which S is the length of sheet pile.
At points B, z = 0 and t = §; we have from Eq. 4:

M o =
——arctan(— S=0
P (61)“ ©)

and hence Eq. 4 reduces to:

R _M (62 . t2)1/2 (6)
7z .6_1. arctan [_—6_1___

Considering points F, z = iD and t = oo; and
substituting into Eq. 6 we get:

- 2iD5 |

L)

M = )

in which D is the thickness of the permeable soil, and
hence

t=2+62%+ B%tanhzg—;-)llz ®
Substituting from Eq. 7 into Eq. 5 we get:
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2iD

o arctan(-—)
x 0,
from which
6=sin.gmd61=ws.;_g ®
therefore
S 2%Z.112
t = XOtan2X> 4 tanh2*Z 10
=0 SZD[ 2D D a9

Equation 10 is the required transformation between the z
and t-planes.

Substituting points A, z = - Band t = - 3, into Eq.
10:

B, = cos (tan22l§_ M tanhz’z‘_g)m an
in which B is the base width of dam.

Following the same for points C, z = Landt = f,:

12
By = cosXS | tan2®S . tann2 7L (12)
2D 2D 2D

Figure (3) provides graphical evaluation of both 8, and
B,, (Harr 1962).

Now let us consider the mapping of the w-plane onto
the t-plane, Figures (2-b) and (2-c), from the Schwartz-
Christoffel transformation we have:

t

W= Ml dt.

+N; (13)
[(t -8)(t- 32)(t+1)(t+3 ]

Performing the integration of Eq. 13 (Spiegel 1963 and
Tuma 1979) we get:

W =M, [ F(m,f) - F(m,01)] + N;
in which M’; and N are complex constants, F(m,§) and

F(m,6,) are elliptic integrals of the first kind, m,f and
8, are given as follow:

_[a+8y6 +8p]” as
(ﬁl + 3ﬂ(5 + 1)
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Figure 3. 3/, and 3, versus S/D, Accordihg to Egs. 11
& 12.

Considering points C, w=-iq and t=+f, and
substituting into Eq. 14:
-iq = - M’ F(m, 6;) + N; (18)

in which q is the seepage per unit length of dam.
Similarly for points D, w=-kh-iq, t=-1 we get:

kh-ig=M;[K-F@m,60)] +N; (19

in which k is the hydraulic conductivity of soil, h is the
net head acting on the dam, Figure (1), and K is the
complete elliptic integral of th first kind.

From Eqgs. 18 and 19 we get:

o iy
M, = kb 20
= (20)
and
N %F(mﬁl) @1)

Substituting from Eqgs. 20 and 21 into Eq. 14

W o= - [%F(m,e) + iq] 22)
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Equation 22 provides the required transformation between
the w and t-planes.

Now considering points B, w=0 and t=+4 and
substituting into Eq. 22 we get (Abramowitz and Stegun
1970):

a _¥ @3)
Kh K
in which K’ is the complete elliptic integral of the first
kind with the complementary modules (1-m?)!2.. By
means of Eq. 23 the seepage per unit length of dam, q,
can be evaluated.

OPTIMAL LENGTH OF FILTER

As the'length of filter increases its initial cost increases
but more seepage is taken by the filter and hence more
safety against piping is achieved. The most economical
condition is that in which a sufficiently high seepage
percentage is taken by a limited length of filter. For
convenience Figures (4) through (7) are plotted to
illustrate the variation of the seepage ratio, q/kh with the
filter length ratio L/D for various sheet pile length ratios
S/D. Each of the above mentioned figures corresponds to
a specific B/D value. In all the figures the rate of
increase of the seepage ratio rapidly decreases at high
filter length ratios and at seepage ratios close to their
maximum values. ;

Table 1. Increase in Filter Length Corresponding to
1% increase in seepage.

Increase in Seepage | ' Corresponding Average increase
Taken by Filter in Filter Length
95 % - 96 % 104 %
96 % - 97 % 130 %
97 % - 98 % 155 %
98 % - 9% 259 %

The average percentage increases in the seepage ratios
corresponding to one percent increase in the filter length
ratio for seepage percentages between 95 % and 99 % are
given in Table 1. From this table it is evident that the
percentage increase in filter length is abnormally high for
the one percent increase in seepage between 98% and
99%. This indicates that the 98% seepage percentage
might be taken as the design criterion for the optimal
length of filter.
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Figure 5. Seepage ratio versus filter length ratio
(B/D = 0.4).
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Figure 6. Seepage ratio versus filter length ratio
(B/D = 0.6).
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Figure 8. Design filter length ratio versus sheet pile
length ratio.

lf'igure (8) was coastructed on the basis of 98 % seepage
criteria and hence can be used for design purposes.

EXAMPLE

It is required to find the length of the downstream filter
of a dam for the following conditions: D = 22.0m, B =
120m and S = 1.5m.

Solution
S _ 15 _ ,
D " 230 0 0068
B 120
= =222 -0
D 220 >0

from Figure (8), considering the above values we have:
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L/D = 0.815, from which:
L =0.815(22.0)
= 17.93 m (taken L = 18.0 m).

CONCLUSIONS

A study on the optimal length of downstream filter
indicates that the length increases with an increase in the
length of an end sheet pile and the thickness of the
permeable soil beneath the dam. Uneconomical increase
in the filter length corresponds to relatively small
increases in the seepage taken by the filter when high
seepage percentages are considered. Specifically, a one
percent increase in the seepage percentage (from 98% to
99%) corresponds to about 26% increase in the length of
filter. Accordingly the 98 % seepage is taken as the filter
length design criterion since though only 2% of seepage
is not taken by the filter yet, saving in filter length that
may exceed 50% are attained. A chart for designing the
proper length of filter is provided and the solution of a
numerical example shows that the chart is simple an
practical. : '
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